

Before use, read through this User's Guide to ensure proper use.

□ Keep this User's Guide at an easily accessible place so as to be referred anytime as necessary.

- The contents of this User's Guide are subject to change without notice for the improvement in product, specification, or usability of this User's Guide.
- This User's Guide is only intended to provide information about the product, and dose not guarantee any result from usage of the product. Muscle Corporation is not responsible for any damages and/or injuries resulting from the implementation in accordance with the contents of this User's Guide.
- Please notify our sales representative if you have some doubts or comments with the contents of this User's Guide.
- The contents of this User's Guide do not guarantee or grant rights to patents, copyright, or any other rights to the intellectual property of Muscle Corporation or any third party. Muscle Corporation is not responsible for any problems that may occur concerning the intellectual property rights of third parties resulting from the application of information provided in this User's Guide.
- Cool Muscle is a registered trademark of Muscle Corporation.
- Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States and other countries.
- Other company names and product names described in this User's Guide are trademarks or registered trademarks of their respective holders. The trademark notices (TM, ®) are not necessarily appended to company, system, and product names described in this User's Guide.

•Before reading CML User's Guide, please read "CM2 User's Guide" for installation or operation of Cool Muscle and "CWL Operation Manual" for the usage of "COOLWORKS LITE", Cool Muscle operation software.

© 2007 Muscle Corporation. All rights reserved.

It is prohibited to reprint or copy all or any part of this User's Guide without prior written permission.

INDEX

Chapter 1

CML Overview ······ 00)1
1.1. What is CML? · · · · · · · · 00)1
1.2. Motion Mode ······ 00)2
1.3. Memory Map · · · · · · · · · 00)3

Chapter 2

Operation by CML · · · · · · · · · · · · · · · · · · ·
2.1. Direct Mode······ 004
2.1.1. Data Commands in Direct Mode ······ 005
2.1.2. Execution Commands in Direct Mode · · · · · · · · · · · · · · · · · · ·
2.2. Program Mode ······011
2.2.1. Data Commands in Program Mode ······013
2.2.2. Program Bank Commands ······015
2.2.3. Ladder Logic Bank Commands · · · · · · · · · · · · · · · · · · ·

Chapter 3

Parameter Setting ·····	025
3.1. K parameters ·····	· 025

Chapter 4

Sample Program ······ 077
4.1. Various PTP motion · · · · · · · · · · · · · · · · · · ·
4.1.1. Basic PTP motion 077
4.1.2. Merge Motion ······ 078
4.1.3. PTP motion with different Accelerations and Decelerations
4.1.4. Push Motion · · · · · · · · · · · · · · · · · · ·
4.2. Various Processing · · · · · · 081
4.2.1. Loop Processing ······ 081
4.2.2. Basic Branch Processing 082
4.2.3. Branch Processing using Logic Operator ······ 083

4.2.4. Branch Processing with Wait function
4.2.5. Nesting · · · · · · · · 08
4.3. Controlling Multiple Motors · · · · · · · · 08
4.3.1. Synchronized motion in Two Dimensions ······ 08
4.3.2. Non-synchronized motion in Two Dimensions · · · · · · · · · · · · 08
4.4. Interpolation ······ 08
4.4.1. Circular Interpolation by Specifying Radius
4.4.2. Circular Interpolation by Specifying Center Point
4.4.3. Linear Interpolation · · · · · · · · · · · · · · · · · · ·
4.5. Ladder Logic Banks · · · · · · · · · · · · · · · · · · ·
4.5.1. Basic Operations · · · · · · · · · · · · · · · · · · ·

Chapter 5

Setting Examples ······ 094
5.1. Manual Jog / Feed · · · · · · · · · · · · · · · · · ·
5.2. Rotation Pulse Output ····· 095
5.3. Origin Search · · · · · · · · · 096
5.3.1. Origin Search using Stopper · · · · · · · · · · · · · · · · · · ·
5.3.2. Origin Search using Sensor · · · · · · · · · · · · · · · · · · ·
5.3.3. Origin Search with Z Phase Signal · · · · · · · · · · · · · · · · · · ·
5.4. External Encoder · · · · · · · · · · · · · · · · · · ·
5.4.1. External Encoder / Index Operation · · · · · · · · · · · · · · · · · · ·
5.4.2. External Encoder / Feedback Operation ······
5.4.3. External Encoder / Pulse-Counting Operation
5.5. Torque feedback control ······ 103
5.6. Modbus Protocol······ 105
5.6.1. Message Transmission Mode · · · · · · · · · · · · · · · · · · ·
5.6.2. Time Interval between Data ····· 106
5.6.3. Message Framing · · · · · · · · · · · · · · · · · · ·
5.6.4. Function Code · · · · · · · · · · · · · · · · · · ·
5.6.5. Exception Responses · · · · · · · · · · · · · · · · · ·
5.6.6. Termination of Modbus Mode · · · · · · · · · · · · · · · · · · ·

Chapter 6

С	ML List ······116
	6.1. K Parameter ······116
	6.2. Data Commands ······124
	6.3. Program Bank Commands · · · · · · · · · · · · · · · · · · ·
	6.4. Ladder Logic Bank Commands · · · · · · · · · · · · · · · · · · ·
	6.5. Execution Commands ······131
	6.6. Query · · · · · · · 132
	6.7. Arithmetic Operators ······137
	6.8. Logic Operators · · · · · · 138
	6.9. Comparison Operators 139

Revision History · · · · · · · · · · · · · · · · · · ·
--

Explanation of icon

Icons used in this User's Guide.

Warnings and notices

Important points

Supplemental explanations

Chapter 1 CML Overview

1.1. What is CML?

CML is a short form of "Cool Muscle Language", which is a collection of commands used to control the motion of Cool Muscle. CML consists of the following commands.

Parameters

Parameters set Cool Muscle's operating conditions. Do not change parameters while the motor is in motion. Please refer to Section 3.

Data Commands

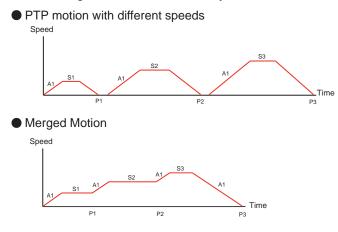
Data commands define the data for Cool Muscle's motion and support various kind of motion. Please refer to section 2.1.1, 2.2.1.

Bank Commands

Bank Commands define motion logic. Program Banks are executed by the Execution commands. Please refer to 2.2.2, 2.2.3.

Execution Commands

Execution commands execute or stop motion of Cool Muscle. Please refer to 2.1.2.


Query

Query commands confirm Cool Muscle's current status (defined value as position, speed etc). Please refer to 6.6.

Operator (Arithmetic / Logic / Comparison)
 By using both data and bank commands, more complex motions are possible.
 Please refer to 6.67, 6.78 for more detailed information.

Please use 1 byte character fonts only. CML does not distinguish between upper case and lower case characters. The following motion can be created by CML

Example:

From the origin, the motor accelerates/decelerates using A1. Move with stops at each point (P1,P2,P3) changing the speed (S1, S2, S3).

Example:

From the origin, the motor moves to P3 with the acceleration/deceleration A1, changing speeds (S1,S2,S3) at each point (P1, P2) without stop.

Motion Control for Multiple motors

By specifying the Motor ID, up to 15 motors can be controlled on a single network. 3 Dimensional motions can be accomplished on a single network for X, Y, Z applications.

Circular / Linear Interpolation

Using the new interpolation commands, 2 axis systems can be coordinated and trace arcs and lines. Ovals are also possible.

Conditional Branching

Using New logic operators, branching by multiple input or motor status is possible. It supports various branching as motion branching and conditional branching.

1.2. Motion Mode

There are 2 modes of operation in the Cool Muscle.

Direct Mode

Like chatting online, you can control the Cool Muscle directly. Direct Mode is useful for an instant control, debugging, or the interrupt handling in a program (ex. forced termination). Direct Mode is available in all types of Cool Muscle.

Program Mode

By using Bank commands, Cool Muscle executes motion according to the block of predefined motion logic (Bank command). There are Program Bank and Ladder Logic Bank as a block of motion logic. They can be stored in Cool Muscle's memory and executed by execution command or digital signal.

Program bank is useful for repetitive motion applications.

The process depending on input or motor status is described in Ladder Logic Bank. Ladder Logic Bank is scanned continuously in the background per set time by a parameter. It works as a simple sequencer or PLC. *Program mode is not available with the P type.

1.3. Memory Map

By parameter commands, specified numbers of pre-set value can be stored in the Memory of Cool Muscle. Indicate a memory number following parameter commands to read or save the pre-set value. The following diagram outlines the memory composition.

[Param							7	
	K20	K (20~8 Motor me		trol, comn	nunicatior	ı		
						K89		
[Direct	Mode 】						T 1	
	A0	S0	MO	P0	N0	R0		e memory number
							IS I	not specified.
[Progra	m Mode]							
	A1		Accelerat	tion Data		A8		
	S1	S (1~15	·			045		
	M1	Speed E) oto		S15		
	T1		Torque E Timer Da			M8 T8		
	V1	V (1~15						
	!	× .	nming Var	iables		V15		
	P1	P (1~)						
		Position	Data				(≻ Motor Data
						200		
	N1	N (1~)						The memory storage for P, N and R data can be changed
		Circle C	enter Poir	nt Data		,		• only by R (Interporation) type
				Only Inte	erpolation type	200		(total 600 memories).
	R1	R (1~)						
		Circle R	adius Dat					
				Only Inte	erpolation type	200		
	B1	D (4 00					$\left \right\rangle$	
		B (1~30	· ·	In to EOO		da in tatal)		
	B30	Program	I Daliks (JP 10 500	command	ds in total)		
	L1							> Bank Commands
	:	L (1~30)					
	:	•	·	to 500 cor	mmands i	n total)		
	L30]]	

Chapter 2 Operation by CML

2.1. Direct Mode

In Direct Motion, Position, Speed and Acceleration need to be predefined. Motion based on these predefined data is executed by execution command.

- (n: Motor ID, 🖵 : Enter Key input)
- S.n= Value ... Define speed
- A.n= Value ... Define Acceleration
- P.n= Value 🖵... Define Target Position
- M.n= Value ... Define Torque Limit
- ^.n ... Execute action based on the above values

[Operation Example]

Let's operate Cool Muscle

First of all, define the data by entering numbers as below.

```
S.1=100
```

```
A.1=100
```

P.1=10000

```
M.1=100
```

?.1

Defined data can be confirmed by sending the query "?.1"

sent command to Cool Muscle

```
P.1=10000, S.1=100, A.1=100, M.1=100 replied data from Cool Muscle
```

Cool Muscle's default setting is Resolution 1000[ppr], Speed Unit 100[pps], so that the example above should be

Speed = S.1 value x Speed Unit = 100 x 100[pps] = 10000[pps]

Acceleration = A.1 value = 100[kpps2]

Target Position = P.1 value = 10000[pulse]

```
Torque Limit = M.1 value = 100[%].
```

Then operate Cool Muscle by entering the command as below.

^.1

Cool Muscle moves to the target position 10000[pulse] with the set speed and acceleration. After completion of positioning, Cool Muscle replies Ux.1=8 that means in-position status.

Current position can be confirmed by the query command ?96.1.

?96.1 sent command to Cool Muscle

Px.1=10000 replied data from Cool Muscle

2.1.1. Data Commands in Direct Mode

Data Defining Commands	Functions
Unit	Description
Example	Description of example

Motion commands are explained in the format below.

Р	Position Data Definition			
Unit: pulse This command defines Target Position. The value can be defined as relative against current position by using += or -=. If the value is set to 1000000000, the motor will run continuously. Min -1				
P.1=10000Set Target Position to 10000 pulses for Motor 1.P.1=-5000Set Target Position to -5000 pulses for Motor 1.				
		P.1+=100	Add 100 pulses to the current position and set it as Target Position for Motor 1.	
P.1-=200	-=200 Deduct 200 pulses from the current position and set it as Target Position for Moto			
P.1=1000000000	2.1=1000000000 Set endless position as target position for Motor 1.			

S	Speed Data Definition
Unit: 100pps or 10pps or 1pps (Set by K37)	Min-32767value. As example, value is treated as +100 even if -100Minis set32767Only when the motor is running continuously, set Speed to a positive number for CW direction motion, and set Speed to a negative number for CCW direction motion.
S.1=250	Set Motor 1 Speed to 25000/2500/250pps.

A	Acceleration Data Definition		
Unit : Kpps²	This command sets Acceleration.	Min Max	-32767 32767
A.1=100	Set Motor 1 Acceleration to 100 Kpps ² .		

М	Torque Limit Data Definition		
Unit : %	This command sets Torque Limit using a percentage	Min	0
	(0-100%) of the maximum motor torque.	Max	100
	Soon after setting M data, the motor torque should be	·	
	limited by M data.		
M.1=50	Set Motor 1 Torque Limit to 50% of the maximum motor torque	e.	

N	Center Point Data of Circle Definition
Unit: pulse	Only interpolation type can be used. This command defines Center of an arc (circles, ovals, arcs) with 2 axes. Min -100000000 Max 100000000 *The setting range depends on K37
N.1=50, N.2=30	Set Center of a circle to 50pulses for Motor 1 (X axis), and 30 for Motor 2 (Y axis)

R	Radius Data of Circle Definition	
Unit: pulse	Only interpolation type can be used. This command defines Radius for an arc (circles, ovals, arcs) with 2 axes. When R values for both 2 axes are set to equal, then it will draw a circle. When they are different, it will draw an oval. When R is set to a positive number, a longer arc will be drawn. When it is set to a negative number, a shorter arc will be drawn. When it is set to 0, line will be drawn.	Min -100000000 Max 1000000000 *The setting range depends on K37.
R.1=80, R.2=80	Set Radius to 80 pulses for Motor 1 (X axis) and Motor 2 ((Y axis).

2.1.2. Execution Commands in Direct Mode

Execution commands are explained in the format below.

Command	Function
Description	
Example	Explanation of Example

^	Execute the Direct Command Motion	
This command executes motion using predefined Data Commands (S,A,P,M).		
S.1=250	Motor 1 moves to position 10000 with the speed 250 and acceleration 100Kpps2.	
A.1=100		
P.1=10000		
^.1		

	Origin Search	
This command makes the motor search an Origin based on Origin Search Parameters K42,43,45,46.		
*This is a bar not the letter I.		
.1	Motor 1 starts to search Origin.	

1	Move to Position 0
This command makes the motor move to an Origin (Position 0). Acceleration and deceleration are set by	
Parameters K42,43.	
1.2	Motor 2 moves to Origin.

2	Assign Current Position to 0
This command sets the	e current position to Origin (Position 0).
*No motion.	
2.3	Set Motor 3's current potion to Origin

(Enable Motor
This command enables Motor.	
(.1	Enable Motor 1.

)	Motor Free
This command makes the motor "Motor Free".	
).1	Make Motor 1 Motor Free.

0	Output Signal ON	
This command turns the output on. Parameter K34 needs to be set to 4 (General).		
Format: O#.n (# = Output No., n = Motor ID)		
02.1	Output 2 on Motor 1 is set to on.	

F Output Signal OFF			
This command turns the output off. Parameter K34 needs to be set to 4 (General).			
Format: F#.n (# = Outp	ut No., n = Motor ID)		
F2.1 Output 2 on Motor 1 is set to off.			

\$	Save Data		
This command saves	Parameters, Data Commands, Program Banks and Ladder Logic Banks into Cool		
Muscle's Memory. When data is saved, a message "saved. Motor ID" is returned.			
Once saved, the data i	Once saved, the data is kept after the motor is powered off.		
\$.1	Save Motor 1's Data like Program Banks.		

	?	Query
1	This command shows I	Parameters, Data Commands, Program Banks and Ladder Logic Banks stored in Cool
ľ	Auscle's Memory.	
1	?.1	Display the predefined data of Direct mode of Motor 1

# Capture Position Data		
This command sets the current position data to a specified memory.		
#2.1 Take the position memory No.2 from Motor 17s current position.		

Execute Program Bank		
This command executes predefined Program Bank.		
[1.2 Execute Motor 2's Program Bank 1		

]	Pause Program Bank
This command stops a	II motors and pauses Program Bank in operation.
The " [" re-starts Prog	ram Bank in pause.
When this command is	entered twice, Program Bank is terminated and cannot be resumed.
[1.1	
]	Stop all motors and pause Program bank 1.
]	Program bank is terminated.

]1 Pause Specified Motor		
This command specifies a motor on a daisy chain network to be paused.		
]1.3 Only Motor 3 pauses on a daisy chain network.		

		~	1.	~ ·	1 A
Stop	after	Com	oletina	Current	Line

This command pauses the program bank after completing the current line in Program Bank.

The "[" command re-starts the program bank in pause.

}

*

}.1

When this command is entered twice, Program Bank is terminated and cannot be resumed.

Motor 1 stops after completing the current line in Program Bank.

Emergency Stop

This command makes all motors stop with the maximum deceleration. This is used when emergency stop is required. To re-start the motion, you have to cancel Emergency Stop using *1 Command. The program is resumed with the next executable line.

Program Bank stops when this command is transmitted twice, and Program Bank operates from the beginning with command [after canceling the emergency stop by command *1.

This command can be assigned to inputs.

•				
		0n	emergency	oton
- 2	EXECUTE	d 11	emencency	SIGO

*1 Cancel Emergency Stop	
This command cancel Emergency Stop * and enable the motor.	
*1 Cancel an emergency stop	

>	Execute Next Line	
This command execute	es the next line of Program Bank in pause.	
After executing the last line of Program Bank, the motor executes no motion and reply "End!".		
>.1 Execute the next line of Program Bank of Motor 1 in pause		

<	Execute Previous Line			
This command executes the previous line in Program bank in pause.				
When execution is impo	ossible, a message [Can't back!] is displayed.			
<.1 Execute the previous line of Program Bank of Motor 1 in pause				

[L	Execute Ladder Logic Bank	
This command executes the specified Ladder Logic Bank in the background.		
Format: [L#.n (#=Program Bank No., n=Motor ID)		
[L2.1	Motor 1 executes Ladder Logic Bank 2 in the background.	

JL	Stop Ladder Logic Bank	
This command stops Ladder Logic Bank running in the background.		
]L.1	Motor 1 stops Ladder Logic Bank running in the background.	

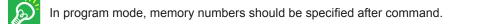
@ Execute Circular and Linear Interpolation Motion

Only Interpolation type can be used.

The starting point is the current position. Motors execute Circular or Linear Interpolation motion toward the set position based on set R or N data.

Format: @#.n modifier <+/-> (#=P memory No., n=Motor ID)

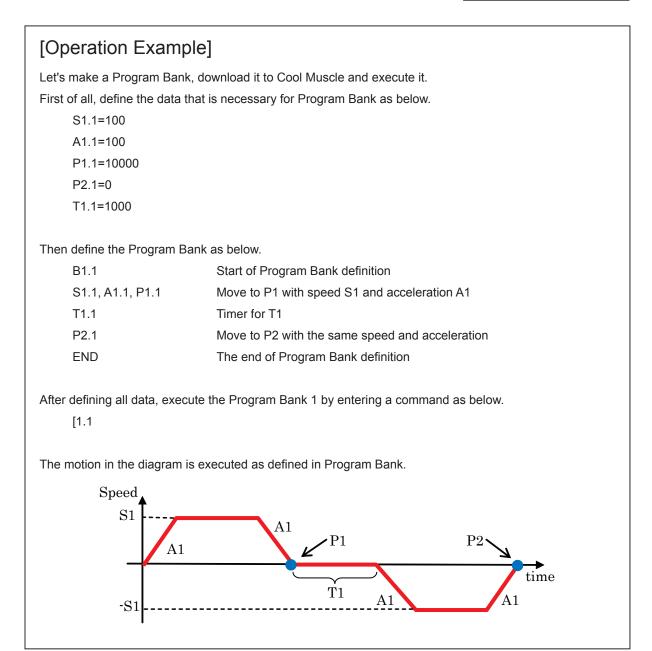
The modifier should be set to + for CW direction, and - for CCW direction.


@.1+, @.2+	Motors execute Circular Interpolation motion for CW direction toward P positions of	
@3.1-, @4.2-	Motor 1 and Motor 2.	
	Motors execute Circular Interpolation motion for CCW direction toward P3 of Motor 1	
	and P4 of Motor 2.	

∖ (¥ or ₩)	Area division of Data Command			
Only Interpolation type	can be used.			
The Data Command of	P, N, and R in total 600 are divided the area.			
The occupancy priority	The occupancy priority: P, N, R			
After allocation of P, N	After allocation of P, N should be allocated within the rest area. The rest area after allocation of N should be			
allocated for R automat	allocated for R automatically.			
If the maximum numbe	r is allocated for P, N and R should be 0.			
\P300	300 pieces are allocated for P as a data definition area.			
\N200	200 pieces are allocated for N as a data definition area.			
	The definition area of R becomes "600 - Number of P - Number of N" without			
	specification. (R area should be 100 pieces in example.)			

2.2. Program Mode

i


In program mode, positions, speeds, accelerations need to be predefined. Using these predefined motion data, Program Banks can be created. Program Banks are executed by execution commands. Please refer to Chapter 4 for program examples for different applications.

The following shows basic structure of CML in program mode. (#=Memory No., n=Motor ID, = Enter Key input)

S#.n=Value	\mathbf{i}	1
A#.n=Value	Define each data using	
P#.n=Value	Motion commands	
V#.n=Value		Transfer the predefined text files to the motor
B#.n	Define motion order using Bank	or input data directly via COOLWORKS LITE
P#.n=V#.n	Commands.	or Hyper Terminal.
S#.n, A#.n, P#.	n ⇒Bank Commands are described after	
P#.n	B command (starting with Command B).	
END	/]
[#.n 🖵	The specified Program Bank (B#) is	executed based on the above definition.

It is suggested to create, edit and save Program Bank data as text files because whole Program Bank data should be transferred even though there is a small change. Please save the file as .txt.

2.2.1. Data Commands in Program Mode

Data Commands can define multiple motion patterns. Each Data Command requires a memory number. The capacity of available memory space depends on the command.

Data Commands are explained in the format below.

Motion Commands	Function	Available memory space
Unit	Description	
Example	Explanation of Example	

Р	Position Data Definition	1 ~ 200
Unit: pulse	This command defines Target Position. The value can be defined as relative against set position by using += or -=. If the value is set to 1000000000, the motor will run continuously. It can be defined up to 600 including Data Command N and R. (Interpolation ty *When executing an relative positioning after rotating a motor shaft in motor status, motor moves to a relative position from the current position before moto Execute "Counter Reset" in this case.	
P2.1=10000	Save the value of 10000 to Motor 1's P memory 2.	
P2.1=-5000	Save the value of -5000 to Motor 1's P memory 2.	
P2.1+=1000	Save the value of 1000 as the relative one to Motor 1's P m	emory 2.

S	Speed Data Definition	1 ~ 15	
Unit:	This command sets the motor Speed as an absolute value.		
100pps or	As example, value is treated as +100 even if -100 is set.	Min Max	-32767 32767
10pps or	Only when the motor is running continuously, set Speed to	INICA	52101
1pps	a positive number for CW direction motion, and set Speed		
(Set by K37)	to a negative number for CCW direction motion.		
S2.1=250	Save the value of 250 to Motor 1's S memory 2.		

A	Acceleration Data Definition	1	~ 8
Unit: Kpps²	This command defines Acceleration.	Min Max	-32767 32767
A2.1=100	Save the value of 100 to Motor 1's A memory 2.		

Т	Timer Data Definition	1 ~ 8
Unit: msec	This command defines Timer.	Min 0 Max 32767
T2.1=1000	Save the value of 1000 to Motor 1's T memory 2.	

М	Torque Limit Data Definition	1 ~ 8
	This command sets Torque Limit using a percentage	
Unit: %	(0-100%) of the maximum motor torque.	Min 0
	Soon after setting M data, the motor torque should be	Max 100
	limited by M data.	
M2.1=50	Save the value of 50 to Motor 1's M memory 2.	

V	Variable Data Definition		1 ~ 15	
	This command is for mathematics operation or conditional branching by the value.			
	General Data can be defined up to 4 digit numbers like 4 characters or motor's			
	internal state value. Note that " (double quotation) is need	ded to us	e characters and	
	motor's internal state value.		400000000	
	Followings are motor internal state values.	Min Max	-1000000000 1000000000	
	PxCurrent Position	max	1000000000	
Unit: -	SxCurrent Speed			
	Ix…Current Iq			
	UxCurrent Motor Status			
	PePosition Error			
	AINAnalog Input			
	PTTarget Position			
	STTarget Speed			
V2.1=12345678	Save 12345678 to Motor 1's V memory 2.			
V3.1="abcd"	Save abcd to Motor 1's V memory 3.			
V4.1="Px"	Save Px to Motor 1's V memory 4.			

Ν	Center Point Data of Circle Definition	1 ~ 200	
	Only interpolation type can be used.		
	This command defines Center Point of an arc (circles,	Min -100000000	
Unit: Pulses	ovals) using 2 axes.	Max 100000000	
	It can be defined up to 600.	The setting range depends on K37.	
N2.1=50,N2.2=30	Save the values of 50 for Motor 1 (X axis) and 30 for Moto	r Motor 2 (Y axis) to N memory 2	
	of each motor.		

R	Radius Data of Circle Definition		1 ~ 200		
	Only interpolation type can be used.				
	This commands defines Radius of an arc (circles,	Min	-100000000		
	ovals) using 2 axes.	Max	1000000000		
Unit: Pulses	0 must be set for Linear Interpolation. *The setting range depends on P				
	Only interpolation type can be used.				
	It can be defined up to 600.				
R2.1=80,R2.2=80	Save the values of 80 for Motor 1 (X axis) and Motor 2 (Y	axis) to R n	nemory 2 of each		
	motor.				

2.2.2. Program Bank Commands

Program Bank must start with the B command and end with End command. Program Bank is terminated also with the linefeed and without any command. Multiple commands in a single line are available and should be separated with commas. The maximum number of commands per motor is 500 commands in total.

Bank Commands are explained in the format below.

Program Commands	Function	Available memory space
Description		
Example	Explanation of Example	

•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
В	Beginning of Program Bank	1 ~ 30
This command defines the beginning of Program Bank.		
Format: B#.n (# = Program Bank No., n = Motor ID)		
B2.1	Define the beginning of Motor 1's Program Bank 2.	

С	Call other Program Bank				1 ~ 30
Program Bank, and bar line after completing th C command can not Program Bank. Prog executes cannot be ca	and executes the specific ck to the original Program Bank e called Program Bank. be used to call the other ID's ram Bank where C command lled again. esting) should be under 10.	class1 B1.1 : C2.1 ~ :	class2 B2.1 : C3.1 : :	class3 B3.1 : C4.1 :	class10 B10.1 : : :
B1.1 C2.1	Motor 1's Program Bank1 calls a	nd execu	ites Motor 1's	Program I	3ank 2.

J	Jump to other Program Bank	1 ~ 30
This command jumps t	o and executes specific Program Bank.	
But different from C con	mmand, it will not go back to the original Program Bank.	
J command can be use	ed to jump out of a looped program bank.	
J command can not be	used to jump to the other ID's program bank.	
B1.1	Motor 1's Program Bank 1 jumps to and executes Motor 1's Pro	gram Bank 2.
J2.1		

S	Speed	1 ~ 15
This command define	s Speed in S memory space. This command needs to be	defined before motion
commands (P, Q, Y, Z	Z, @). If S command is not defined, the previously used val	ue will be applied. The
specified memory value can be changed by the value from Arithmetic Operator.		
S2.1, A2.1, P2.1	Use the value defined in Motor 1's S memory 2 as Speed whe	n Motor 1 moves to P2.
S3.1=S2.1+V2.1	Save the total value of the value defined in Motor 1's S mo	emory 2 plus the value
	defined in Motor 1's V memory 2 to Motor 1's S memory 3.	

A	Acceleration	1 ~ 7
This command sets the	e acceleration value in a specified memory space.	
This command needs	to be defined before motion commands (P, Q, Y, Z, @). If the A c	command is not defined,
the previously used ac	cceleration will be applied. The specified memory value can be	e changed by the value
from Arithmetic Operat	or.	
S2.1, A2.1, P2.1	Use the acceleration value stored in Motor 1's memory 2, the m	otor moves to position 2.
A3.1=A2.1+V2.1	Save the total acceleration value (acceleration value stored i	n motor1's acceleration
	memory position 2 plus the value stored in motor 1's general	memory position 2) to
	motor 1's acceleration memory position 3.	

Р	Position	1 ~ 200
This command saves	the position value in a specified memory. Use + or - after Moto	or ID to make the value
relative. This value car	be added or subtracted from the current position.	
The specified memory	value can be changed by the value from Mathematics Operator	
S2.1, A2.1, P2.1	Motor moves to P memory 2 with Acceleration memory 2 and Spee	ed memory 2 respectively.
P2.1+	Motor moves from the current position by the travel distance defin-	ed by position memory 2.
P3.1=V1.1+V2.1	Save the total values stored general memory 1 and 2 to motor 1's	s position memory 3.
	*When executing an relative positioning after rotating a mo	otor shaft in motor free
	status, motor moves to a relative position from the current pos	sition before motor free.
	Execute "Counter Reset" in this case.	

Y	Execute next line without in-position queuing		
Use this command ins	Use this command instead of P to execute motion. However execute the next line of Program Bank without		
the in-position of Y cor	the in-position of Y command. Note that Program Bank may not be resumed after stop command during the		
operation of several Y commands.			
S2.1, A2.1, Y2.1	Motor 2 starts executing line 2 without waiting for Motor 1 to complete line 1.		
S3.2, A3.2, P3.2			

Q	Push Motion	
Use this command inst	ead of P to execute push motion toward the target position.	
If the motor reaches the	e target position before completing push motion, an error occurs (message, Ux.n=256).	
To avoid this error, set the target position well behind the object that the motor pushes. Torque value and push		
time are defined by parameter K60 and K61.		
S2.1, A2.1, Q2.1	The motor performs push motion from the current position to P memory No.2.	

Z	Execute next line without push motion completion		
Use this command ins	Use this command instead of Q to execute push motion. However execute the next line of Program Bank		
without the in-position of Z command.			
S2.1, A2.1, Z2.1	Motor 2 starts executing line 2 without waiting for Motor 1 to complete line 1.		
S3.2, A3.2, P3.2			

M Torque Limit		1~8
This command sets Torque Limit using a percentage (0-100%) of the maximum motor torque.		
M1.1=V5.1+V6.1 Set the operated value from V5.1+V6.1 as value for M1.1.		

l I	IConditional Branching on Input Status1 ~ 6			
This command makes	This command makes conditional branching based on the specified input status. Conditional branching			
possible based on the	status of all Motors' ID on daisy chain network.			
Use a logic operator wi	Use a logic operator when an action is based on the status of 2 inputs.			
I2.1, C3.1, C4.1	If Motor 1's input 2 is on (true) then execute Program Bank No	o.3, if off (false) then call		
I1.2 && I2.3, C3.1,	execute Program Bank No.4.			
C4.1	If Motor 1's input 1 and Motor 3's input 2 are on (true) then	execute Program Bank		
	No.3, else execute Program Bank No.4.			

Т	Timer	0~8
This command sets the timer in timer memory locations. T0 means no action.		
* Please specify same Motor ID for T command and B command.		
T2.1 Motor 1 waits for the time defined by Timer memory No.2.		

W	Timer in Conditional Branching 0 ~			
Use this command in	stead of T to wait for the time defined by T command while th	e specified input status		
is true. If the input sta	tus changes while the motor is waiting, then it resumes motion.	. If it is set to 0 then the		
motor waits indefinitel	motor waits indefinitely.			
* Please specify same	* Please specify same Motor ID for W command and B command.			
I2.1, W2.1, ?99.1	If motor1's input 2 is on (true) then the motor waits for the tim	ne defined by T memory		
P2.1	No.2. If the input status changes during the wait then the moto	or executes ?99 and the		
	next line (move to P memory No.2).			

Х	Looping	0 ~ 255
specified times. The number of loops to 0, it loops indefinite The repeatable layer If the layer is over 10,	•	B1.1 X2.1 X10.1 class10 X.1- X.1-
X3.1 S2.1, A2.1, P2.1 X.1-	The lines between X and X- will be looped three	e times.

V	Conditional Branching, calculation and data	1~15	
V	display using general data	1~15	
1) Conditional branchin	1) Conditional branching can be executed using general data value.		
Arithmetic or Logic of	operators can realize conditional branching with 2 general data v	values.	
2) Arithmetic operator p	performs data calculations.		
3) When this command	l is used alone, it displays the specified general data value.		
This is used for a me	essage sent to a host.		
* Please specify same	* Please specify same Motor ID for V command and B command.		
B1.3			
V1. <mark>3</mark> > V	2. <mark>3</mark> , ~ , ~		
V2.1, ?99.1, ?98.1	If V2.1>0, then execute ?99.1. If not, execute ?98.1.		
V2.1== V3.1, ?99.1, ?98.1	V2.1== V3.1, ?99.1, ?98.1 If V2.1 equals V3.1, then execute?99.1. if not, execute?98.1		
P2.1= P3.1+ V2.1	Save the total value of P3 and V2 to Motor 1's position memory No.2.		
V2.1	Display motor 1's general data value 2		

N	Center Point of Circle	1 ~ 200	
Only interpolation type	Only interpolation type can be used.		
When this command is	When this command is described before @ command, it defines the specified N memory values as the center		
of a circle.			
N2.1, N2.2	Set the center values stored in motor 1 and 2's center mem	ory No.2 as the center	
	position of a circle.		

R	Radius of Circle 1 ~ 200			
Only interpolation type	can be used.			
When this command is	described before @ command, it defines the specified R mem	ory valuea as the radius		
of a circle.				
The modifier after Motor ID, + or -, defines the arc size.				
When R is set to a positive number, a major arc will be drawn and when it is set to a negative number, a minor				
arc will be drawn. If the	values are set to 0, linear interpolation will be executed.			
R2.1, R2.2	Set the values stored in Motor 1 and 2's Radius memory No.2 as the radius for a circle.			

END	End of Program Bank			
This command defines	es the end of each Program Bank.			
B1.1				
S2.1, A2.1, P2.1				
END	End of Program Bank No.1			

, (comma)	Command Concatenation / Merge Motion / Simultaneous Motion Execution		
When multiple commar	When multiple commands are listed in a single line, each command need to be separated by a comma.		
This allows for merge n	notion, instantaneous motion and dimultaneous motion by multiple axes.		
S2.1, A2.1, P2.1	Combining commands: move to P2 with Acceleration A2 and Speed S2.		
A2.1, S2.1, P2.1, S3.1, P3.1	Merge motion: Move to P3 without stopping at P2. Speed changes to S3 when		
P2.1, P3.2	passing P2.		
	Synchronous motion: Motor 1 moves to P2 and Motor 2 moves to P3 at the same time.		

; (semi colon)	Command Concatenation in Multiple Lines	
This allows for multiple commands to combine over multiple lines. This can be used for combining commands,		
Merge motion and Synchronous motion.		
S2.1, A2.1, P2.1;	Merge motion: Motor 1 moves to P3 without stopping P2. Speed changes to S3 when	
S3.1, P3.1	passing P2. (same as in a single line with commas.)	

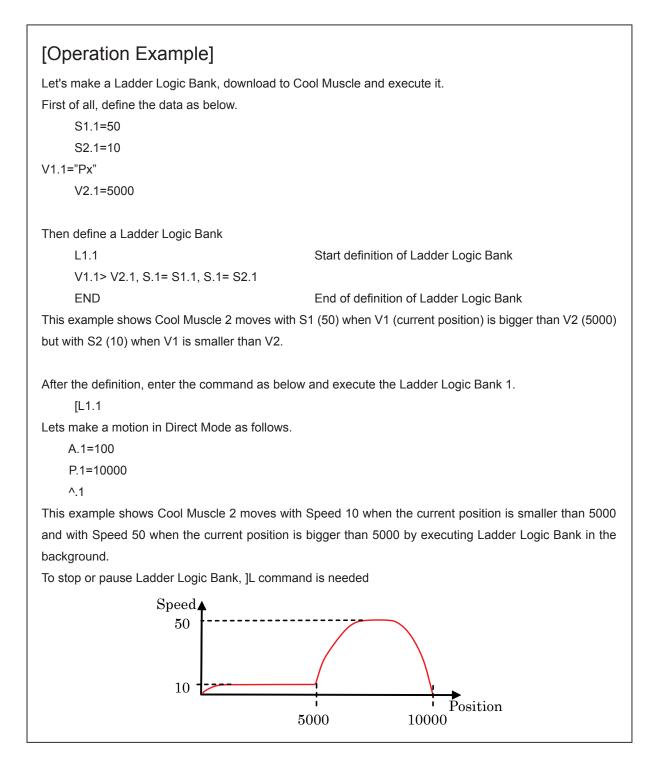
: (colon)	Command Concatenation in Branching		
This command can realize to execute multiple commands in conditional branching.			
V1.1> V2.1, ?99.1: O1.1, ?96.1: F1.1		If V1.1>V2.1, then execute 29.1 and O1.1. If V1.1 \leq V2.1, then	
		execute ?96.1 and F1.1.	

//	Comment
This command allows	you to write comments in Program Bank files. The description between this command
and CRLF is not recog	nized as commands. Comments are not stored into Cool Muscle memory.
// Comments here	Comments

Execute	Execute commands within Program Bank
Commands	Execute commands within Frogram bank
Various commands for Direct Mode are available in Program Bank.	
Please refer to 2.1.2.]1, [L,]L, >, <, }, \$ commands can not be used.	

2.2.3. Ladder Logic Bank Commands

Ladder Logic Bank is independent from Program Bank and can be executed in the background. Therefore Cool Muscle can execute PLC functions in standalone mode, because they can execute the operations with defined data like Positions, Speeds and Accelerations. Ladder logic Bank execution cycle time is set by K63.


Ladder Logic Bank definition must start with the L1 command and finish with the End command. Ladder Logic Bank also finishes with two CRLFs without any command. Multiple commands in a single line must be separated by a comma. The maximum number of commands per motor is 500 commands in total.

Basic format for CML Ladder Logic Bank is as below. (#: Memory No. , n: Motor ID. : Enter Key Input)

L#.n
P#.n = V#.n + V#.n
l#.n && l#.n, V#.n = V#.n, T0
END

Transfer the predefined text files to the motor or input data directly via COOLWORKS LITE or Hyper Terminal.

[L#.n 🖵 ... A specified Ladder Logic Bank performs operator processing based on predefined data.

Ladder logic bank commands are explained in the format below.

Bank command	Function	Available memory space
Description		
Example	Explanation of Example	

•••••••••••••••••••••••••••••••••••••••	

L	Beginning of Ladder Logic Bank	1 ~ 30
This command defines the beginning of a Ladder Logic Bank.		
Format: L#.n (#=Program Bank No., n=Motor ID)		
L2.1	Begin the definition of Motor 1's Ladder Logic Bank 2.	

CL	Call other Ladder Logic Ba	nk			1 ~ 30
This command calls ar	d executes the specific Ladder				
Logic Bank, and back	to the original Ladder Logic	class1	class2	class3	class10
Bank line after completing the called Ladder Logic Bank.		L1.1 :	- L2.1	- L3.1 :	L10.1 : : : :
CL command can not be used to call the other ID's		CL2.1 -	CL3.1 -	CL4.1 ≺	{
Ladder Logic Bank.			:	:	
The maximum layer (ne	esting) should be under 10.		•	·	
L1.1	Motor 1's Ladder Logic Bank N	lo.1 calls	Motor 1's	Ladder	Logic Bank No.2 and
CL2.1	executes it.				

JL	Jump to other Ladder Logic Bank	1 ~ 30
This command jumps t	o and executes specific Ladder Logic Bank.	
But different from CL c	ommand, it will not go back to the original Ladder Logic Bank.	
JL command can be used to jump out of a looped Ladder Logic Bank.		
JL command can not b	e used to jump to the other ID's Ladder Logic Bank.	
L1.1	Motor 1's Ladder Logic Bank No.1 calls Motor 1's Ladder	Logic Bank No.2 and
JL2.1	executes it.	

l I	Conditional Branching on Input Status	1 ~ 6	
This command makes	This command makes conditional branching based on the specified input status. Conditional branching is		
possible based on the	status of all Motors' ID on daisy chain network.		
Use a logic operator w	Use a logic operator when an action is based on the status of 2 inputs.		
I2.1, CL3.1, CL4.1 If Motor1's input 2 is on(true), then execute Ladder Logic Bank No.3. if off(false), then ca		o.3. if off(false), then call	
	execute Ladder Logic Bank No.4		
11.2 && 12.3, CL3.1,	If Motor 1's input 1 and 2 are on(true), then execute Ladder Log	ic Bank No.3. if not then,	
CL4.1	execute Ladder Logic Bank No.4.		

Т	Timer	0 ~ 8
This command sets the	timer in timer memory locations. T0 means no action.	
* Please specify same Motor ID for T command and L command.		
T2.1	Motor 1 waits for the time defined by Timer memory No.2.	

W	Timer in Conditional Branching	0~8	
Use this command in	stead of T to wait for the time defined by T command while th	e specified input status	
is true. If the input sta	tus changes while the motor is waiting, then it resumes motion.	. If it is set to 0 then the	
motor waits indefinitely	motor waits indefinitely.		
* Please specify same	* Please specify same Motor ID for W command and L command.		
I2.1, W2.1, ?99.1	If motor1's input 2 is on (true) then the motor waits for the tim	ne defined by T memory	
O1.1	No.2. If the input status changes during the wait then the moto	or executes ?99 and the	
	next line (move to P memory No.2).		

#	Capture Position Data	
This command sets the	This command sets the current position data to a specified memory.	
This function is the san	This function is the same as the position teaching.	
#2.1	Take the position memory No.2 from Motor 1's current position.	

V	If then motion, calculation and data display using general data 1 ~ 15	
1) Conditional branchir	ng can be executed using general data value.	
Arithmetic or Logic of	operators can realize conditional branching with 2 general data values.	
2) Arithmetic operator p	performs data calculations.	
3) When this command	is used alone, it means the specified general data value.	
This is used for a me	essage sent to a host.	
* Please specify same	Motor ID for V command and L command.	
B1. <mark>3</mark>		
:		
V1. <mark>3</mark> > V	2.3, ~ , ~	
V2.1, ?99.1, ?98.1	If V2.1>0, then execute ?99.1. If not, execute ?98.1.	
V2.1== V3.1, ?99.1,	If V2.1 equals V3.1, then execute?99.1. if not, execute?98.1	
?98.1	Define the value of P3 + V2 as Motor 1's P memory 2.	
P2.1= P3.1 + V2.1	Motor 1 shows the data defined in General Data memory 2.	
V2.1		

END	End of Ladder Logic Bank
This command defines	the end of each Ladder Logic Bank.
L1.1	
V2.1= V2.1 + V3.1	
END	End of Ladder Logic Bank No.1.

, (comma)	Command Concatenation
When multiple command	Is are listed in a single line, each command need to be separated with a comma.
V2.1>V3.1, V2.1=V3.1,	Combines commands
T0.1	

; (semi colon)	Command Concatenation in Multiple Lines
This allows for multiple	commands to combine over multiple lines. This can be used for combining commands,
Merge motion.	
V2.1>V3.1;	Combines commands over several lines.
V2.1=V3.1, T0.1	

: (colon)	Command Concatenation in Branching
This command can real	lize to execute multiple commands in conditional branching.
V1.1> V2.1, ?99.1: O1	.1, ?96.1: If V1.1>V2.1, then execute ?99.1 and O1.1. If V1.1≦V2.1, then execute
F1.1	?96.1 and F1.1.

//	Comment
This command allows	you to write comments in Ladder Logic Program files. The description between this
command and CRLF is	not recognized as commands. Comments are not stored into Cool Muscle memory.
// Comments here	Comments

Execute Commands	Execute commands within program b	bank
	Execute commands within program	Jann

Various commands for Direct Mode are available in Ladder Logic Bank.

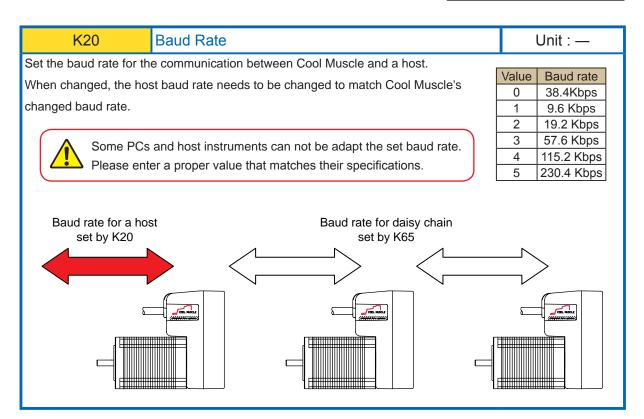
Please refer to 2.1.2.]1, [L,]L, >, <, }, \$ commands can not be used.

Chapter 3 Parameter Setting

The Cool Muscle has initial settings that can be adjusted based on your application. Please refer 6.1. Each parameter is identified by a unique number and has a specific function. To set a parameter, enter a desired value following the = sign as below.

K [Parameter No.] . [Motor ID] =value

Each parameter has individual setting range. The value out of the range will not be reflected. The changed value is saved automatically.


3.1. K parameters

The following chart outlines each K Parameter's usage

Parameter No.	Setting Item	Unit
Parameter Description		

[Setting Example]

The example and explanation about parameters.

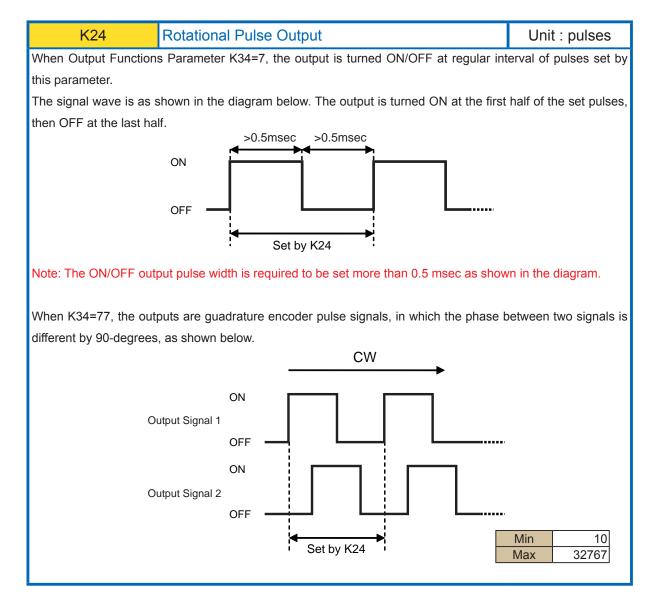
[Setting Example]

K20.1=1

Set 9.6kbps to the baud rate.

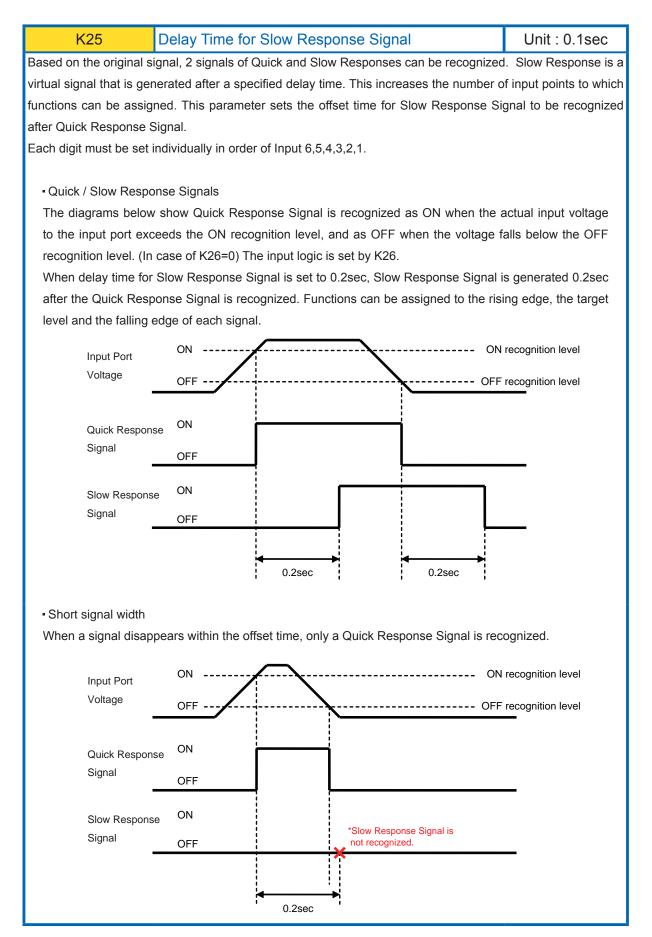
Cool Muscle's communication buffer could be overflowed by a delay of communication data processing when a lot of data are transferred to Cool Muscle and over-written at a time with high communication speed.

K	23	Status Report		Unit : —
Defines	s the status r	eport method as an automatic repo	ort by each event when status	s changes. Local ec
of sent	data from a	host, confirmation messages or er	ror massages for mis-operat	ion can be set by t
parame	ter as well 1	t can be set by the addition of the fu	inction No. 1-16 (Max. value	is 31)
parame				
Value		Status Rep	ort Method	
0	No status re			
1		y report to a host when in-position a	and alarm occur.	
2		y report to a host when input status		
4		y report to a host when output statu		
8	No local ech	• • •		
16	Various con	firmation messages and error mess	ages will be reported to a hos	st.
	Confirmatio	n Messages]		
		Messages	Description	
	[End c	of Bank]	Program Bank input is finish	ed properly
	<u> </u>	e Baud Rate ??	Confirmation message wher	
		bps (Y/N)	is changed by K20	
		bps (1/14)		
	[Error mess	<u> </u>		
		Messages	Description	
		0.n: Out Of Range!!	K Parameter value is out of	range
		1.n: syntax error!!	Program Bank syntax error	
		2.n: too many steps!!	Program Bank steps exceed	
		3.n: XX is not allowed in bank.1	XX command can not be de	
	error0	4.n: XX can not be followed by DD	XX command can not be de	fined before
			DD.	
	error0	5.n: Program Bank does not exist!!	Program Bank does not exis	st.
		6.n: Ladder Bank does not exist!!	Ladder Logic Bank does not	t exist.
		7.n: CW Limit!!	CW limit sensor is on	
	error0	8.n: CCW Limit!!	CCW limit sensor is on	

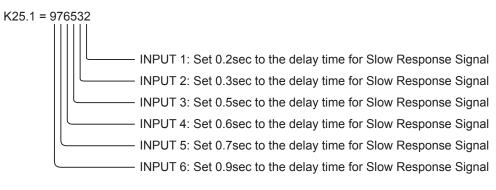

[Setting Example]

K23.1=13

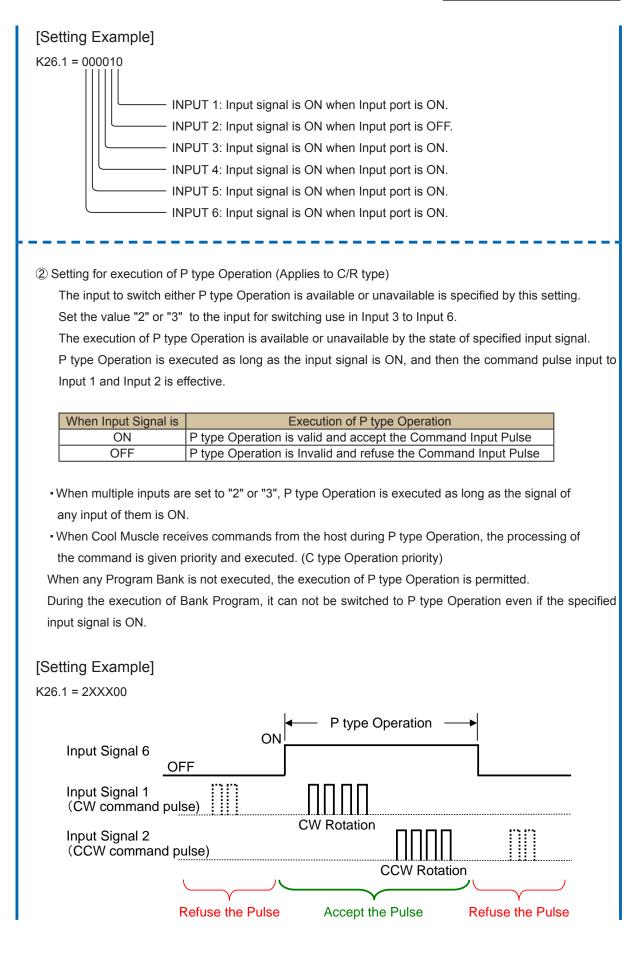
- 1: Automatically report to a host when in-position and alarm occur.
- 4: Automatically report to a host when output status changes.
- 8: No local echo


When 3 functions are combined, the value shall be 1+4+8=13 by addition.

Chapter 3 Setting by Parameter


[Setting Example]

K24.1=1000 The output, set by K34=7, turns ON and OFF every 1000 pulses.



029

[Setting Example]

	Input Logic	c / P type Ope	eration		Unit : —
This parame	er sets				
1 Input	_ogic (the logic for inp	out signals and t	he effective edge for c	command puls	e inputs)
2 Execu	tion of P type Operati	ion (applied to (C/R type)		
Set each fun	ction by the digit in or	der of Input 6,5,	4,3,2,1		
To each Inpu	t 1 ~ 6,				
• Set "0"	or "1" for only setting	Input Logic			
• Set "2"	or "3" for setting the e	execution of P ty	pe Operation besides	Input Logic.	
-				() D (
-			en the rotation control	-	/pe Operation, by
-	-		ded for C/R type Cool		"2" or "2" in Input 2
5 and 6.	TOFP type Operation	is enabled by th	e input of which the se	suing value is	
5 and 6.					
① Setting for	Input Logic				
Value	Judgment of "Inp		Effective edge of Co	ommand Pulse	e Input
0 or 2 1 or 3	'	fied ON OFF	Rising Edge of Falling Edge of	Input Po	ort
Value			Description		
	nput signal is ON whe				
E	Effective edge: Rising	edge of input po	ort		
	Input Port ON				ON recognition
	Input Port				-
	Input Port			<u></u>	ON recognition
	Input Port			<u> </u>	-
	Voltage OFF Quick Response ON Signal			<u></u>	-
	Voltage OFF Quick Response ON				-
	Voltage OFF Quick Response ON Signal				-
	Input Port Voltage OFF Quick Response ON Signal OFF Pulse effective edge				-
	Input Port Voltage OFF Quick Response ON Signal OFF Pulse effective edge	en input port is C			-
	Input Port Voltage OFF Quick Response ON Signal OFF Pulse effective edge	en input port is C			-
	Input Port Voltage OFF Quick Response ON Signal OFF Pulse effective edge nput signal is ON whe Effective edge: Falling	en input port is C			-
	Input Port Voltage OFF Quick Response ON Signal OFF Pulse effective edge nput signal is ON whe Effective edge: Falling Input Port ON Voltage	en input port is C edge of input p			OFF recognition
	Input Port Voltage OFF Quick Response ON Signal OFF Pulse effective edge nput signal is ON whe Effective edge: Falling	en input port is C edge of input p			OFF recognition
	Input Port Voltage OFF Quick Response ON Signal OFF Pulse effective edge nput signal is ON whe Effective edge: Falling Input Port ON Voltage OFF	en input port is C edge of input p			OFF recognition
	Input Port Voltage OFF Quick Response ON Signal OFF Pulse effective edge Input signal is ON whe Effective edge: Falling Input Port ON Voltage OFF Quick Response ON Signal	en input port is C			OFF recognition
	Input Port Voltage OFF Quick Response ON Signal OFF Pulse effective edge nput signal is ON whe Effective edge: Falling Input Port ON Voltage OFF	en input port is C			OFF recognition
	Input Port Voltage OFF Quick Response ON Signal OFF Pulse effective edge Input signal is ON whe Effective edge: Falling Input Port ON Voltage OFF Quick Response ON Signal	en input port is C			OFF recognition

032

* When the setting value of Input 1 or Input 2 is "2" or "3".

P type Operation is executed at all times and the motor rotation is controlled by only the command pulse input to Input 1 and Input 2.

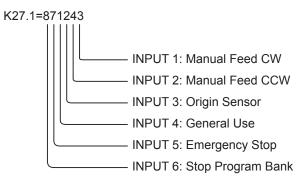
[Setting Example]

K26.1 = XXXX22 K26.1 = XXXXX2

K26.1 = XXXX2X

P type Operation Only (C/R type Operation is not available)

K30 Input Functions at the Slow Response Target Voltage (STV) Unit : —		Input Functions at the Quick Response Target Voltage (QTV)	
	K30	Input Functions at the Slow Response Target Voltage (STV)	Unit : —


These parameters assign functions performed at the target voltage level of quick and slow response signals.

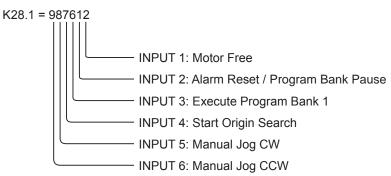
Please note that input functions should not be interfered with each other, when assinging.

(Ref the diagram in K25 description)

Set each function by the digit order of Input 6,5,4,3,2,1.

#	Functions	Description				
0	No Function	_				
1	General Use	Used by Command I in program execution.				
2	Origin Sensor Signal (K27)	The signal from Origin Sensor. (K27)				
	— (K30)	— (К30)				
3	Manual feed CW	Motor rotates in CW direction while the input signal is ON, with the				
		speed and acceleration set by K49 and K43.				
4	Manual Feed CCW	Motor rotates in CCW direction while the input signal is ON, with the				
		speed and acceleration set by K49 and K43.				
5	Stop Ladder Logic Bank	Stop Ladder Logic Bank				
6	CW Direction Limit Sensor	Usually used for a CW direction limit sensor.				
	(CW Origin Sensor	When an origin sensor signal is not assigned to other inputs, this				
	combined use)	input works as an origin sensor signal for the origin search motion				
		CW direction.				
7	Emergency Stop	Emergency Stop by an input signal on (stop by Max. deceleration)				
		Emergency Stop is canceled by an input signal off.				
8	Stop Program Bank	Stops motion and Program Bank execution. Same as]] command.				
9	CCW Direction Limit Sensor	Usually used for a CCW direction limit sensor.				
	(CCW Origin Sensor	When an origin sensor signal is not assigned to other inputs, this				
	combined use)	input works as an origin sensor signal for the origin search motion to				
		CCW direction.				

K28	Input Functions at the Quick Response Rising Edge (QR)	Unit : —			
K31	Input Functions at the Slow Response Rising Edge (SR)	Unit : —			
These parameters assign functions performed at the Quick and Slow rising edges of signals.					


Please note that input functions should not be interfered with each other, when assinging.

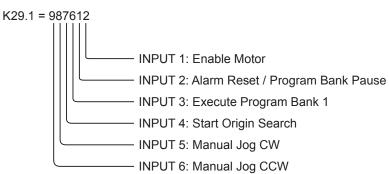
For example, assign "Motor Free" to a rising edge of Quick Response Signal and "Start Origin Search" to a falling edge of Slow Response Signal, Cool Muscle goes into motor free state before starting the origin search. (Ref the diagram in K25 description)

Set each function by the digit in order of Input 6,5,4,3,2,1.

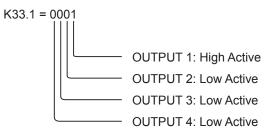
Ί

Value	Function	Description
0	No Function	_
1	Alarm Reset /	This resets alarms, and pauses motion. Pause Program Bank being
	Program Bank Pause	executed.
		Re-start from paused position is possible by 6: Execute Program Bank 1
2	Motor Free	Make a motor go into motor free state and servo OFF.
3	Position Counter Reset	Make the current position to 0 (the Origin)
4	Execute Next	Execute the next line in a Program Bank
	Program Bank Line	B1
		S1,A1,P3 (Line 1)
		S2,A2,P2 (Line 2)
		Rising Edge: Execute line 1
		Next Rising Edge : Execute Line 2
5	Execute Previous	Execute a previous line in a Program Bank
	Program Bank Line	This function could not be performed depending on the content of
		Program Bank.
6	Execute Program Bank 1	Execute Program Bank 1.
7	Start Origin Search	Start Origin Search.
8	Manual Jog CW /	Motor rotates to the amount of feed pulses set in parameter K50, in
	Execute Program Bank 2	CW direction.
		When K36=2 or 3, execute Program Bank 2.
9	Manual Jog CCW /	Motor rotates to the amount of feed pulses set in parameter K50, in
	Execute Program Bank 3	CCW direction.
		When K36=2 or 3, execute Program Bank 3.

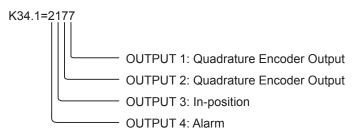
K29	Unit : —			
K32 Input Functions at the Slow Response Falling Edge (SF)		Unit : —		
These parameters assign functions performed at the Quick and Slow falling edges of a signals.				

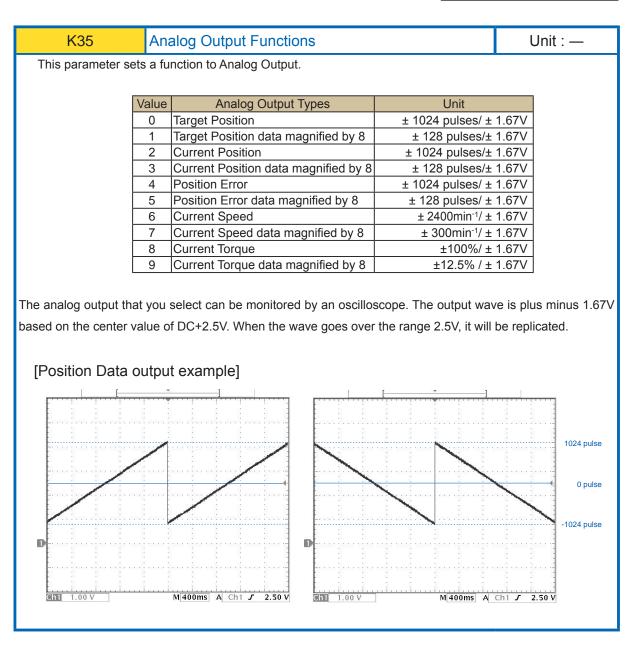

Please note that input functions should not be interfered with each other, when assinging.

For example, assign "Motor Free" to a rising edge of Quick Response Signal and "Start Origin Search" to a falling edge of Slow Response Signal, Cool Muscle goes into motor free state before starting the origin search. (Ref the diagram in K25 description)

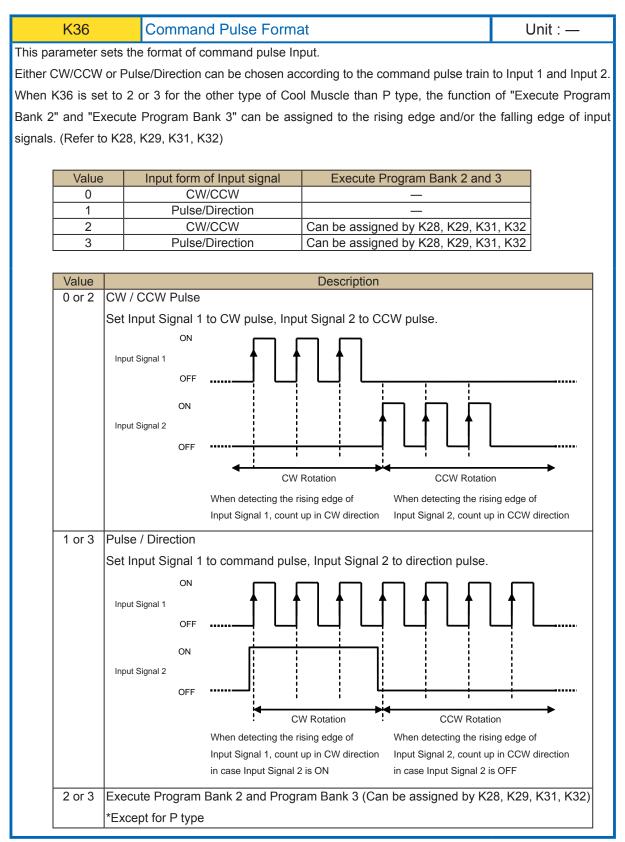

Set each function by the digit in order of Input 6,5,4,3,2,1.

T


Value	Function	Description
0	No Function	—
1	Alarm Reset /	This resets alarms, and pauses motion. Pause Program Bank being
	Program Bank Pause	executed.
		Re-start from paused position is possible by 6: Execute Program Bank
2	Enable Motor	Cancel "Motor Free" and servo ON.
3	Position Counter Reset	Make the current position to 0 (the Origin).
4	Execute Next	Execute the next line in a Program Bank.
	Program Bank Line	B1
		S1,A1,P3 (Line 1)
		S2,A2,P2 (Line 2)
		Rising Edge: Execute line 1
		Next Rising Edge : Execute Line 2
5	Execute Previous	Execute the previous line in a Program Bank.
	Program Bank Line	This function could not be performed depending on the content of
		Program Bank.
6	Execute Program Bank 1	Execute Program Bank 1.
7	Start Origin Search	Start Origin Search.
8	Manual Jog CW /	Motor rotates to the amount of feed pulses set in parameter K50, in
	Execute Program Bank 2	CW direction.
		When K36=2 or 3, execute Program Bank 2.
9	Manual Jog CCW /	Motor rotates to the amount of feed pulses set in parameter K50, in
	Execute Program Bank 3	CCW direction.
		When K36=2 or 3, execute Program Bank 3.



K33		Output Logic			Unit : —			
This parameter sets the output logic.								
0 (Low Active): Command F or when output signal by output function is OFF, turn ON the output port.								
1 (High Active): Command O or when output signal by output function is ON, turn ON the output port.								
Set each function by the digit in order of Output 4,3,2,1.								
	Value		Description					
	0	Low Active. Output port is ON when output signal is OFF.	Output Signal	on —	Г			
			Output Port	ON OFF]			
					-			
	1	High Active. Output port is ON	Output Signal	ON	_			
		when output signal is ON.		OFF				
			Output Port	ON	ך			
				OFF				


K34 Output Functions		Output Function	ns Unit : -				
This parameter assigns a function to an output.							
t each fu	inction by th	e degit in order of O	utput 4, 3, 2, 1.				
Value		Functions	Description				
0 No Function			_				
1 In-Position			In-Position signal.				
2 Alarm			Alarm signal.				
3 General Use		se	Output by Command O / Command F.				
4 Completion of Origin Search		n of Origin Search	Output In-Position signal only when the origin search is completed.				
5 —							
6 In-position Signal in Merge Motion		Signal in Merge	Output In-Position signal at the passing points in merge motion. Set a signal width by parameter K73.				
7	Rotation P	ulse Output	Output a signal at certain intervals. Set its interval by parameter K24. When Output 1 and Output 2 are set to 7, they are the quadrature encoder outputs.				
8	In Motor F	ree	Output a signal during motor free state.				
9	In Push M	otion	Output a signal during push motion.				

K35.1=3

Set "Current Position data magnified by 8" to Analog Output

K36.1=0 Set "CW/CCW Pulse" for Command Pulse Format

K36.1=3 Set "Pulse/Direction" for Command Pulse Format

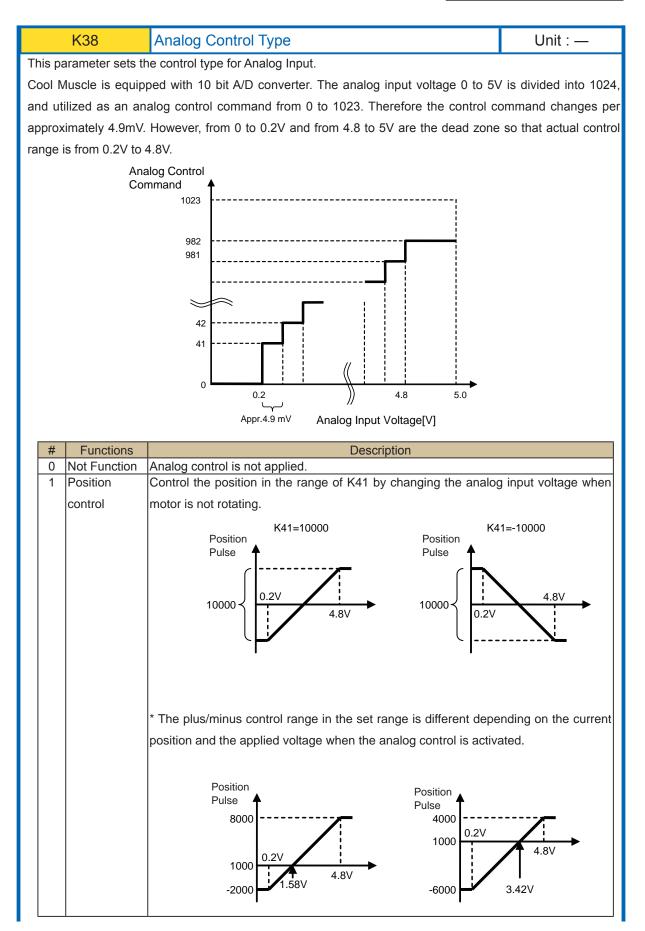
"Execute Program Bank 2 and Program Bank 3" is available by Input Functions

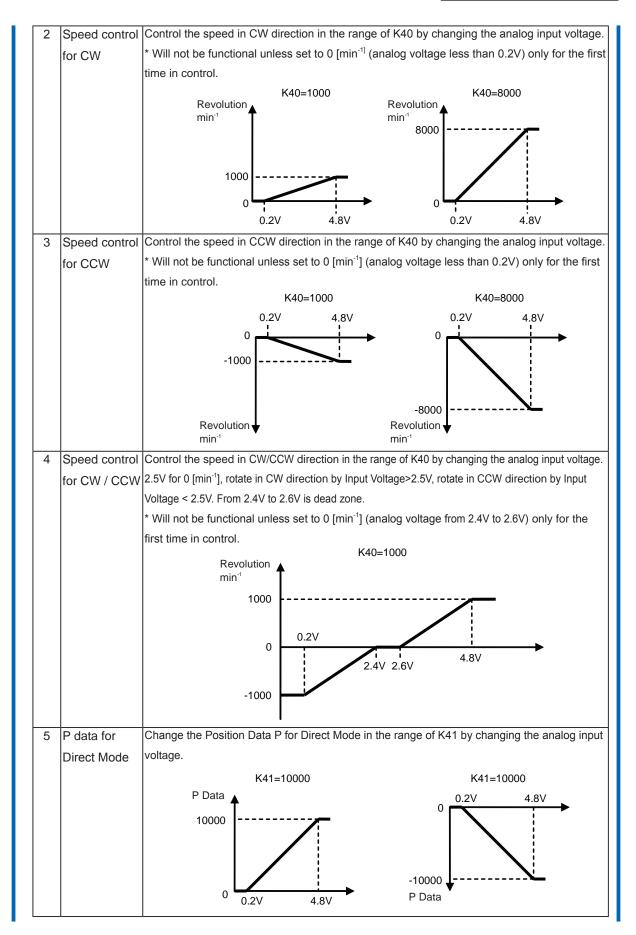
K37	Res

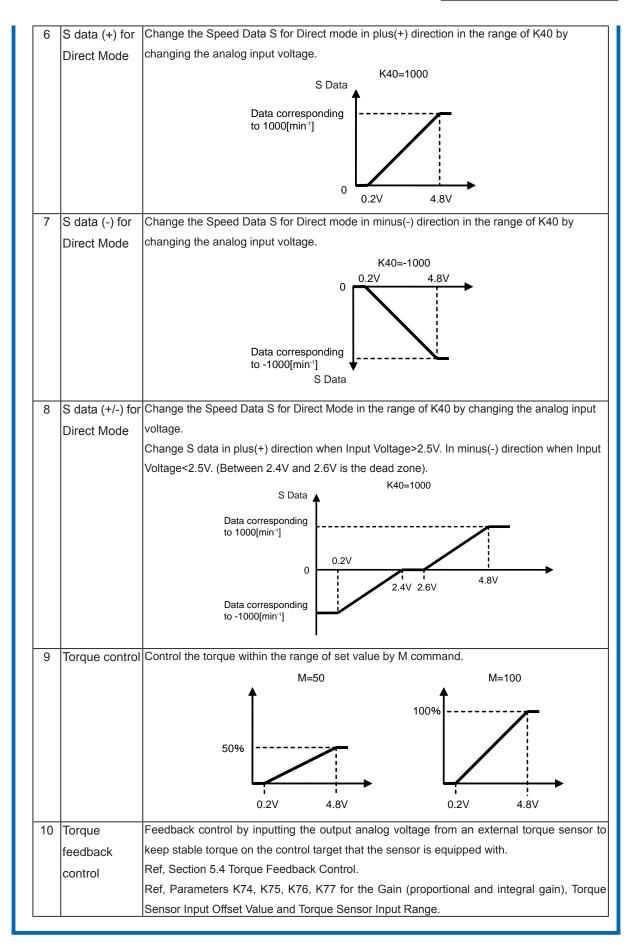
solution / Speed Unit

Unit : ---

This parameter sets the motor's resolution and the speed unit that is used by S command. Each value of 0-10 or 40-50 sets 100pps as the speed unit, each value of 20-30 or 60-70 sets 10pps as the speed unit and each value of 80-90 sets 1pps as the speed unit. The maximum position data is limited depending on the Motor Resolution.


#	Resolution	100pps Max Position (±)	#	Speed unit Resolution	Max Position (±)	#	Speed unit Resolution	Max Positior (±)
0	200	8,589,934	20	200	8,589,934	80	200	8,589,934
1	400	17,179,869	21	400	17,179,869	81	400	17,179,869
2	500	21,474,836	22	500	21,474,836	82	500	21,474,830
3	1000	42,949,672	23	1000	42,949,672	83	1000	42,949,67
4	2000	85,899,345	24	2000	85,899,345	84	2000	85,899,34
5	2500	107,374,182	25	2500	107,374,182	85	2500	107,374,182
6	5000	214,748,364	26	5000	214,748,364	86	5000	214,748,364
7	10000	429,496,729	27	10000	429,496,729	87	10000	429,496,729
8	25000	999,999,999	28	25000	999,999,999	88	25000	999,999,999
9	N/A	N/A	29	N/A	N/A	89	N/A	N//
10	50000	999,999,999	30	50000	999,999,999	90	50000	999,999,999
40	300	12,884,901	60	300	12,884,901			
41	400	17,179,869	61	400	17,179,869			
42	600	25,769,803	62	600	25,769,803			
43	800	34,359,738	63	800	34,359,738			
44	1200	51,539,607	64	1200	51,539,607			
45	1500	64,424,509	65	1500	64,424,509			
46	3000	128,849,018	66	3000	128,849,018			
47	4000	171,798,691	67	4000	171,798,691			
48	6000	257,698,037	68	6000	257,698,037			
49	8000	343,597,383	69	8000	343,597,383			
50	12000	515,396,075	70	12000	515,396,075			


Continuous motion (P=100000000) is still available in any resolution.


[Setting Example]

K37.1=3

Set 1000ppr to the Motor Resolution, 100pps as the Speed Unit

When using the speed control for CW/CCW direction

K38.1=4 Set "Speed Control for CW/CCW" as the analog control type

K40.1=2000 Set 2,000min-1 to Max. Speed

Increase the speed in CW direction by applying analog input voltage from 2.6V to 4.8V and increase the speed in CCW direction when applying analog input voltage from 2.4V to 0.2V.

Reach the Max. Speed 2000min⁻¹ in each direction when 0.2V or 4.8V is applied.

When using the position control

K38.1=1 Set "Position Control" as the analog control type

K41.1=10000 Set 10000 pulse to the travel range

Move 0 to 10000 pulses when changing analog input voltage from 0.2V to 4.8V.

K39	K39 Low Pass Filter Cut-off Frequency						
Cut-off frequency of low	Min	0					
There is no filter when t	Max	1024					
(unit: 5[rad/sec] = 5000	(unit: 5[rad/sec] = 5000[times/sec]/1024)						

K39.1=128 Set 640[rad/sec] to the analog input cut-off frequency

K40	Maximum Speed	Unit : min ⁻¹
This parameter sets mo	otor's maximum speed.	
For the speed control	by the analog input, this parameter sets the maximum spee	d when the maximum
analog voltage is applie	ed.	
	e speed unit [min ⁻¹] to S value is as show in below. nin ⁻¹] x resolution[ppr] / speed unit[100pps or 10pps] / 60	
	Min 000 x 1000 / 100 / 60 = 333	1 pends on motor type

K40=2000

Set 2000[min⁻¹] to the motor's maximum speed.

When using the speed control by the analog input through setting parameter K38, the motor's maximum speed reaches to 2000[min⁻¹] when the maximum analog voltage is applied.

K41	Analog Travel Range	Unif	t : pulses	
This parameter sets the maximum travel range in the position control by the analog				
input, where the input v	Min	-32767		
		Max	32767	

K38=1

K41=4000

If the current position is 0, the position of motor will be controlled in the range from 0 to 4000 according to an analog input voltage level (0.2V-4.8V)

K42	Origin Search Speed	Unit:100pps 10pps 1pps (Depends on K37)
This parameter sets the	e speed for Origin Search.	Min 1 Max 32767

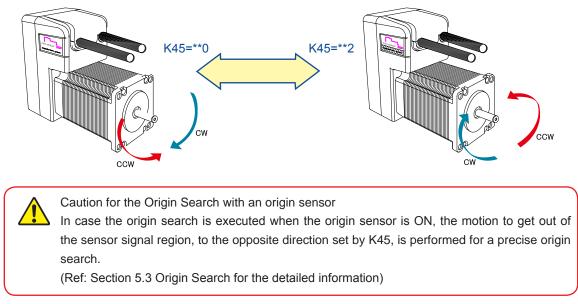
K37=3

K42.1=50 Set 5000pps to Origin Search Speed

K43	Acceleration for Origin Search / Manual Feed	Uni	t : Kpps²
This parameter sets the acceleration for Origin Search.			1
This is also used for the	This is also used for the acceleration for Manual Feed.		32767

[Setting Example]

K43.1=100 Set 100 Kpps² to Origin Search Acceleration


K44	Deceleration Ratio	l	Init : %
This parameter sets	the deceleration ratio relatibe to the acceleration in		
percentage. Acceleration	on and deceleration are the same when 100% is set.	.	40
This parameter is appl	ied to all motion. When individual deceleration is needed,	Min Max	10 500
use CML command.		max	

K44.1=100 Set 100% to the Deceleration Ratio. (Deceleration is the same as acceleration)

K45	Ŭ	Search Direction / R	Unit : —				
Set by using three digits and setting divides by each digit.							
K45.1=□□□							
	Digit	Functions	Value	Descrip	otion		
		Setting of Origin search	0	CW direction			
	First	First Direction and Reverse	1	CCW direction			
	Digit	Coordinates	2	CW direction Revers	e Coordinates		
		Coordinates	3	CCW direction Reve	rse Coordinates		
	Secon	4	0	100 pulse unit			
	-> Digit	Unit of offset by K48	1	10 pulse unit			
	Digit		2	1 pulse unit			
	Third	Linit of coftware limit by	0	100 pulse unit			
		Unit of software limit by K58, K59	1	10 pulse unit			
	Digit	N00, N09	2				

• First Digit ··· Setting of Origin search Direction and Reverse Coordinates

This parameter sets the direction for the Origin Search and Reverse Coordinates. The CW direction usually corresponds to the positive in the coordinate system, but the Reverse Coordinates setting make the CCW direction correspond to the positive. This feature applies for the symmetric machinery without changing signs of all position date but just setting this parameter.

Second Digit ··· Unit of offset by K48
 To set the offset sensitively, set with second digit.

Third Digit … Unit of software limit by K58,K59

To set the software limit sensitively, set with third digit.

[Setting Example]

K45.1=102

-----Set origin search direction to CW direction and Reverse Coordinates.

The unit of the offset set with K48 is set to 100 pulses.

- The unit of software limit with K58 and K59 are set to 10 pulses.

K46	Origin Signal Source			Unit : —	
This parameter specifi	es the method for the				
origin search.		#	Origin Signal Sources		
ongin searon.		0	Stopper Detection		
		1	Stopper Detection		
In case of stopper-dete	cting origin search, the		(automatically starts an origin sear	ch when powered	
origin search operation is completed when a			on)		
pushing torque to a stopper reaches the set		2	Origin Sensor		
	opper reaches the set	3	Origin Sensor		
torque level.			(automatically starts an origin search when powered		
In case of using an or	igin sensor, the origin		on)		
search operation is com	aploted when detecting	4	Z Phase Signal		
		5	Z Phase Signal (automatically star	ts an origin search	
the rising edge of sig	inal from an external		when powered on)		
origin sensor.		6	Origin Sensor & Z-Phase Signal		
		7	Origin Sensor & Z-Phase Signal (a	utomatically starts	
			an origin search when powered on	ı)	
Origin Search that start	Origin Search that starts automatically when powered ON can be set as well.				

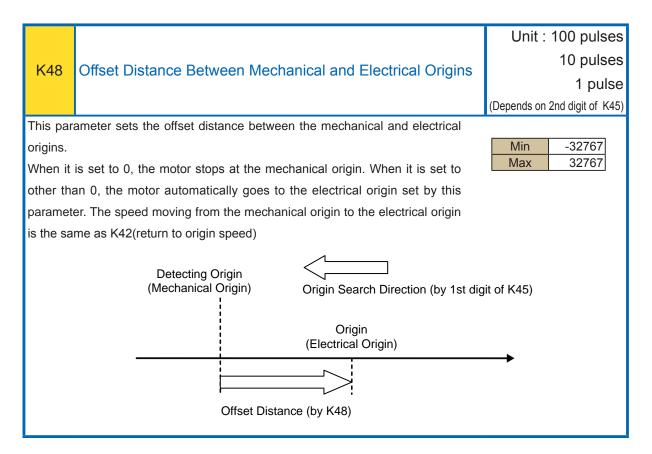
Z-phase signal is generated by the internal position sensor of Cool Muscle and output once per revolution.

Usage of Z-phase signal to detect an origin makes a precise origin search possible that always detects the same origin without an external origin sensor even in a rotative motion.

Furthermore, it is possible to detect an origin by using AND condition with an origin sensor signal. Therefore an origin search with higher repeatability accuracy is realized.

The following related parameters shall be set separately

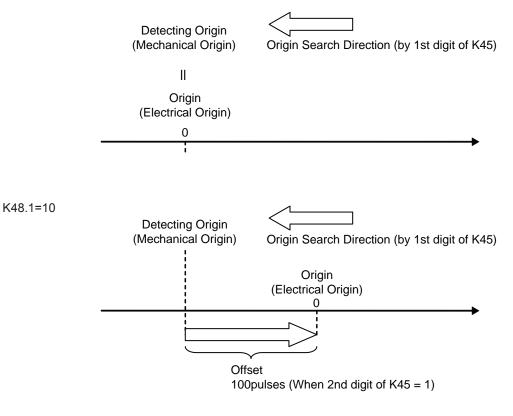
Stopper Detection			Origin Sensor
K42	Origin Search Speed	K27	Origin Sensor Signal
K43	Acceleration for Origin Search	K42	Origin Search Speed
K45	Origin Search Direction	K43	Acceleration for Origin Search
K47	Stopper Detection Torque for Origin Search	K45	Origin Search Direction


[Setting Example]

K46.1=3 Set the origin search by an origin sensor that starts automatically when powered ON for Origin Signal Source.

K47	Stopper-Detecting Torque for Origin Search	U	Init : %
	e torque level to complete the stopper-detecting origin search. o the rated torque of the motor in percentage.	Min Max	10 150
	acceleration is set too high, the torque required when starting nevel and could incorrectly detect the origin. Please decrease K4		aches the

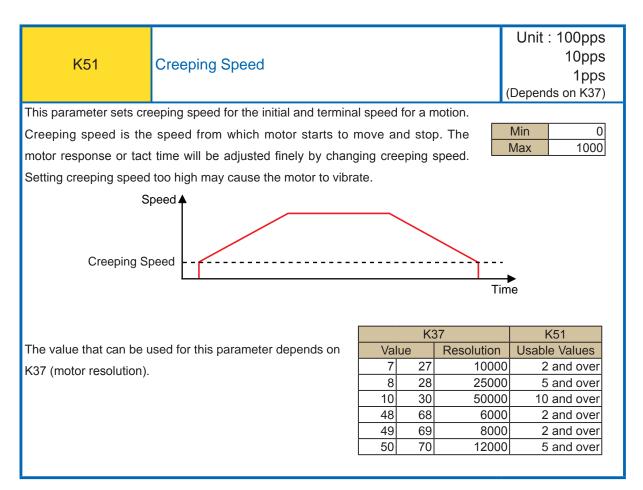
[Setting Example]


K47.1=30 Set the 30% of motor's rated torque for stopper detection torque level.

[Setting Example]

K48.1=0

The mechanical and electrical origins are the same

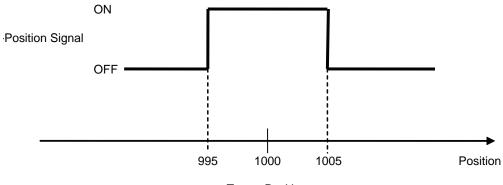


K49	Speed for Manual Feed	Unit:100pps 10pps 1pps (Depends on K37)
This parameter sets th	e speed for manual feed.	Min 1
Acceleration for manua	al feed can be set by K43.	Max 32767

K49.1=100 Set 100 x 100pps = 10000pps for the speed for manual feed.

K50	Feed Pulses for Manual Jog	Unit : pulses	
This parameter sets the	e numbers of feed pulses for manual jog in the pulse unit.	Min Max	1 100

K50.1=10 Set 10 pulses for the numbers of feed pulses in manual jog operation.

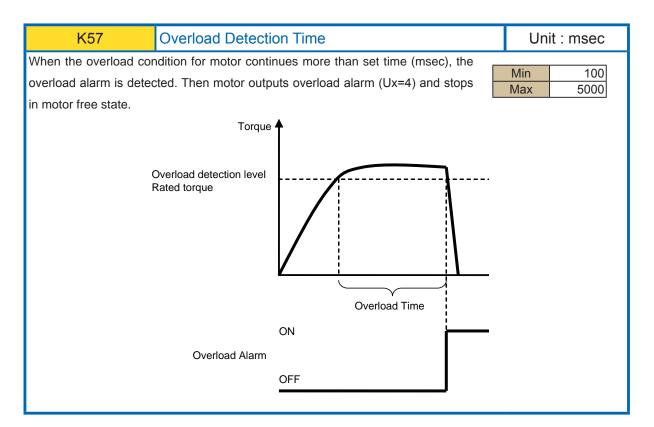


K55	In-Position Range	Unit : pulses
This parameter sets the	e range for In-position in the pulse unit.	
Different from motion c	ompletion signal, in-position is detected when the current	Min 1
position is within the se	et range against the target position.	Max 100
When stopping the mo	otor by a stop command, the stopped position is recognized	as the target position,
therefore In-position is	detected within the set range against the current position.	
When recognized as Ir	n-position, In-position signal is ON and the motor status goes i	n Ux.n=8 (Ref: K23, n:
Motor ID).		
In-position signal can b	e output by assigning an output function (Ref: K34).	
step in a pro When the ra	ange is set to small, In-Position may not be detected and can no ogram. Inge is set too big, the resolution is too small and the speed is to acted before reaching the target position.	

[Setting Example]

K55=5

In-Position signal range is set to 5 pulses. In-position signals will be sent out between 995 and 1005, when the target position is 1000.


Target Position

K56	Position Error Overflow Threshold Level		Unit :	100 pulses
This parameter sets a	a threshold value for the position error overflow in the	_		
100-pulse units. When	the deviation between the current position and command		Min	1
position exceeds the th	nreshold level, the motor outputs an alarm and goes into		Max	32767
motor free state.				

K56.1=50

Set 50K pulses to Position Error Overflow Threshold Level.

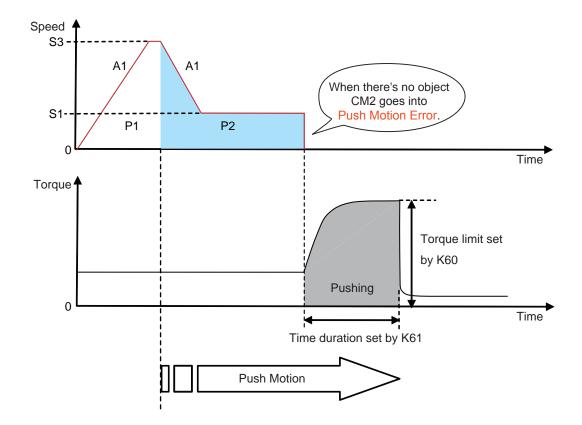
When the deviation between the current position and command position exceeds 5000 pulses. Motor goes into Position Error Overflow alarm (Ux=1) and stops in motor free state.

K57.1=3000

Motor outputs overload alarm when the overload condition continues more than 3000msec, and stops in motor free state.

				Unit : 100 pulses		
K58	Software Limit (+)		10 pul			
100			1 pulse			
		ends on 3rd digit of K45)				
K58 sets the software limit in the positive direction, to prevent the						
motion over the set position.		Valu		Description		
T I : 0 II						
i nere is no soπware lin	nit available when 0 is set.	1~3	2767	+ side software limit		
This function provides the safety stop and cost reduction without an				No software limit		
external hardware as limit sensor.						

				Unit : 100 pulses		
K59	Software Limit (-)		10 pulses			
K39		nt (-)		1 pulse		
		(Dep	ends on 3rd digit of K45)			
K59 sets the software	limit in negative direction in the 100-pulse					
units, to prevent the motion over the set position.			Je	Description		
		-32767 ~ -1		- side software limit		
There is no software limit available when 0 is set.		0		No software limit		


K58.1=200	Set 200 pulse to + direction software limit. (When 3rd digit of K45 = 2)
K59.1=0	Set no software limit in - direction.

K60	Push Motion Torque Level	Unit : %	
This parameter sets th	Min	10	
motor's rated torque in percentage.		Max	100
When the odd number	is set the push motion error will not occur.		·

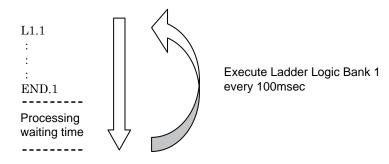
K61	Push Motion Holding Time	Un	it : msec
This parameter sets the	e holding time for the Push Motion.		
The endless Push Motion	on can be applied by setting K61=0	Min Max	0 30000

K60.1 = 50	Set 50% of rated torque to Push Motion Torque Level

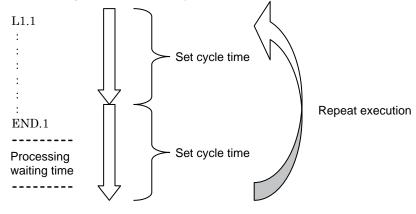
K61.1 = 5000	Motor keeps pushing an object for 5000msec
--------------	--

K62	Ladder Logic Bank No. Executed when Powered ON		Unit : —	
Set a Ladder Logic Bank No. that is executed automatically when powered ON. Min No Ladder Logic Bank will be executed when 0 is set. Max				

[Setting Example]

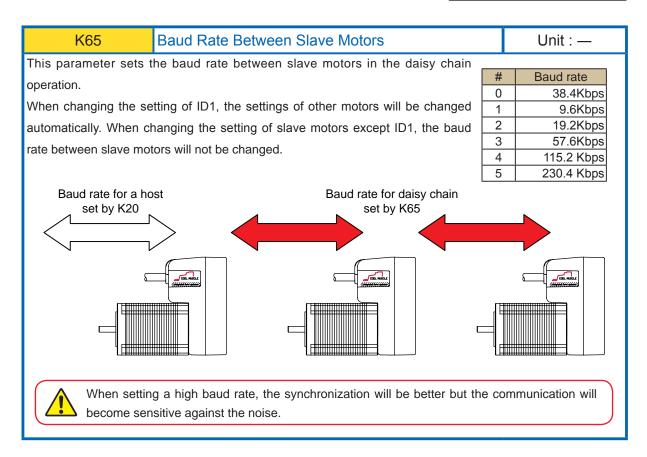

K62.1=2 Ladder Logic Bank 2 is executed automatically when powered ON. (The same as [L2.1)

K63	Ladder Logic Bank execution cycle time	Un	it : msec		
Sets the execution cycl	e time for Ladder Logic Bank.				
When all processing in a Ladder Logic Bank is finished within a set cycle time, the					
execution of processing is forced to wait until the next cycle. When all processing is Min 0					
not finished within a set cycle time, remaining processing is carried over to the next Max 30000					
cycle.					
When K63=0, a Ladder	Logic Bank is not executed.				


[Setting Example]

K63=100

Execute Ladder Logic Bank every 100msec

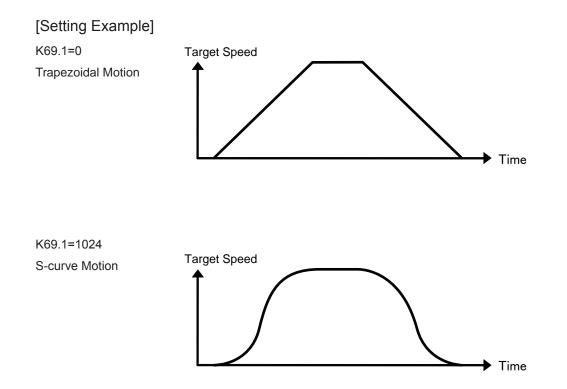


When execution time is longer than execution cycle time

063

K64	Status LED Setting		Unit : —		
This parameter sets either the status LED is activated or inactivated.					
The default value is 0 (Activated)	#	Description		
		-	Status LED Activated		
When setting 1 (Inactivated), the LED will be off all the time including		1	Status LED Inactivated		
an alarm status.					
CM2 User's Guide sha	I be referred to for the LED activated pattern.				

[Setting Example]


K65.1=5

Set "230.4 Kbps" to the baud rate between slave motors.

K68	Motor Free when Powered ON		Unit : —
This parameter sets eit when powered ON.	her servo ON or motor free	Motor free	et content when powered ON when powered ON

K68.1=1 Servo on when powered on

K69	S-Curve gain	U	nit : —
This parameter sets the	e S-curve gain in positioning.		
By setting S-curve, the	e form of target speed for acceleration and deceleration	Min Max	0
periods will be S-shaped according to its gain. Therefore it may effect a			1024
smoother positioning of	r vibration reduction.		
When 0, motor makes	a trapezoidal motion.		

K70	Delimiter		Unit : —	
This parameter sets the	e delimiter type at the end of replied data.	value De		
		0	CR	
		1	CRLF	

[Setting Example]

K70.1=1 Set "CRLF" to the delimiter.

Unit : -

K71	Extern

External Encoder Type

Set the external encoder type.

Value	Set content
0	No external encoder
1	A-phase index
2	A-phase index, B-phase rotation direction
3	A-phase & B-phase index
4	A-phase & B-phase feedback
5	A-phase pulse counting
6	A-phase pulse measuring B-phase rotation direction
7	A-phase & B-phase pulse counting

Index :

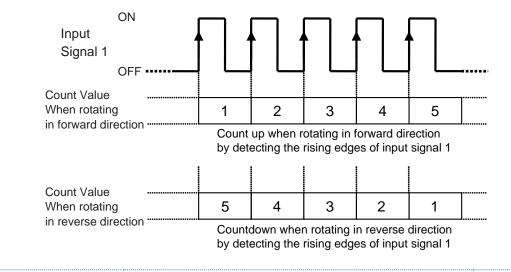
Motor keeps rotating until the numbers of pulses from an external encoder reaches the specified numbers of palses.(It will not adjust the overrun pulses)

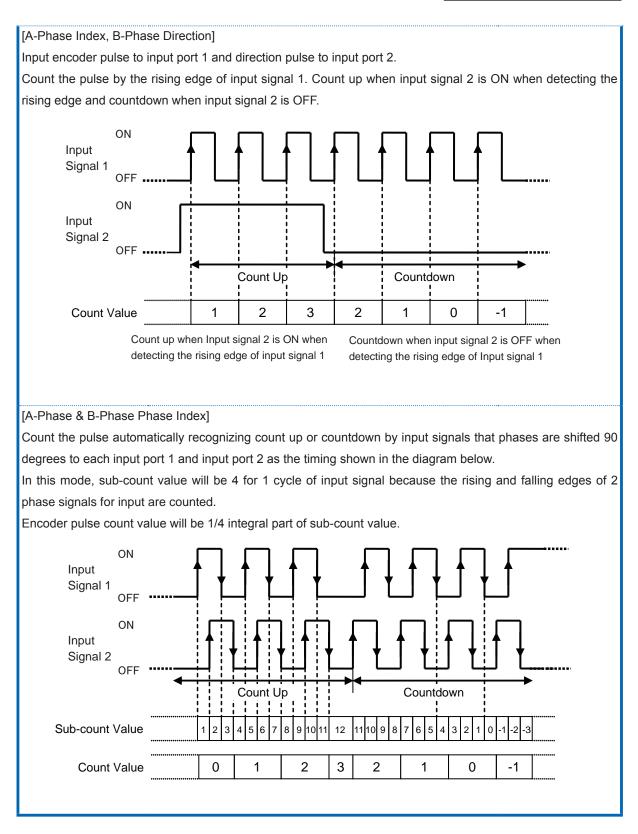
It will be useful for the motion winds in specified amount in one direction without loosening as used in a winding machine.

Feedback :

By the feedback pulses from the external encoder equipped for the control target, the whole system can be controlled as a full closed-loop system.

Pulse Counting :

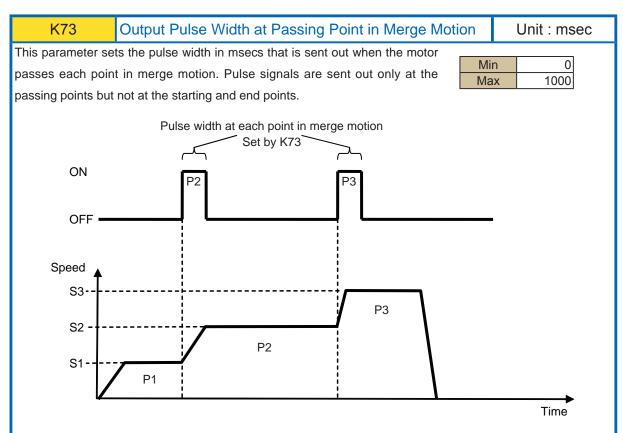

Input the pulses from an external encoder to Cool Muscle and only count the numbers of pulses. This feature is useful for the control according to the amount of movement or speed of the control target.

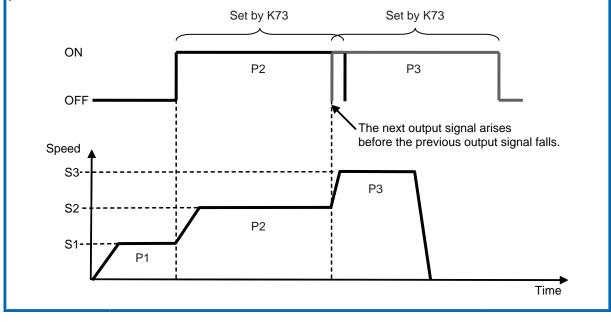

Count Timing for the external encoder depends on input type and is shown as the diagram below. Note: The input logic for the input voltage can be set by the parameter K26.

[A-Phase Index]

Input encoder pulse to input port 1.

Count the pulse when detecting the rising edge. Count up when rotating in forward direction and countdown when rotating in reverse direction.




K72	External Encoder Resolution	l	Unit : ppr	
This parameter sets the	e resolution for the external encoder.	Min Max	0 32767	

[Setting Example]

K72.1=1000 Set 1000ppr to the external encoder resolution

When the pulse width is set too big, the motor can reach the next passing point and the signal arises before the signal falls down. This results in one signal covering multiple points. When this happen, please reset the pulse width smaller.

[Setting Example]

K73.1=100 Set 100msec to the pulse width at passing point in merge motion

K74	Torque Control P Gain	Unit : —	
Set proportional gain fo	Set proportional gain for external torque sensor feedback.		0
	·	Max	1000

K75	Torque Control I Gain		Unit : —
Set integral gain for ext	ernal torque sensor feedback.	Min Max	0 500

Chapter 3 Setting by Parameter

K76	Input Offset for Torque Sensor		nit : 0.01V
Set the offset value of an external torque sensor input for torque feedback control.			
The offset value is the output voltage of external torgue sensor when torgue sensor		Min	0
			500
is 0[N.m].			

K77	Input Range for Torque Sensor		U	nit : 0.01V
In the torque feedba accordance with K74 from external torque s command value specifi	n external torque sensor for torque feedback control. ck control, the motor output can be controlled in (P gain) and K75(I gain), where the feedback data ensor equipped for the control target track the torque ed in the range of $0 \sim \pm 100$ by Variable 15. e voltage level in the unit of 0.01V. The value is the output	٢	Min Max tage o	-1000 1000 f torque sensor
when the torque comm	and value is 100.			

[Setting Example]

K76.1=250

K77.1=200

Output 1[V] for 0.5[N.m], connected to a torque sensor with offset voltage 2.5[V].

Since the offset voltage is 2.5[V], set K76=250.

When set command torque 100 as 1.0[N.m]

Since the torque sensor output when 10[N.m] is 2[V], set K77=200.

Chapter 3 Setting by Parameter

K78	Input Address for Modbus Host Communication	Ur	nit : —
Set the Modbus input address for the host communication.			
Set K78=0 for relative address. When K78=-1 is set, this function is not activated.		Min Max	-1 32767

K79	Input Address for Modbus Slave Communication	Ur	nit : —		
Set the Modbus input address for the slave communication.					
Set K79=0 for relative address. When K78=-1 is set, this function is not activated.		Min Max	-1 32767		

K80 Output Address for N	Modbus Slave Communication Unit : —
Set the Modbus output address for the slave com	
Set K80=0 for relative address. When K80=-1 is s	set, this function is not activated.
	Max 32767

K81	Slave Address	Unit : —			
Set the equipment ID n	Set the equipment ID number for Modbus or RS-485 communication.				
Set the value from -25	55 to -1 in query mode, from 1 to 255 in event mode for	Min -255			
RS-485 communication.		Max 255			
For Modbus communication, set the value from 1 to 255 in the following way.					
Set Cool Muscle's ID No. when Cool Muscle is receiving side, and set the equipment ID No. of receiving side					
when Cool Muscle is transmitting side.					

This parameter changes the communication method. Please change K81 after adjusting, K78, K79 and K80.

[Setting Example]

Set the parameters as shown in the diagram below.

Communication	Parameters					
Mode	K78	K79	K80	K81		
RS-232C	×	×	×	0 (zero)		
RS-485	-1	-1	-1	Query Mode : -255~-1 Event Mode : 1~255		
Modbus	Host Communication Input : 0~32767	Slave Communication Input : 0~32767	Slave Communication Output : 0~32767	1~255		

CML command communication during RS-232C can not be established under RS-485 communication mode. When canceling RS-485 communication, temporary CML command communication will be enabled by 2 times transferring " {equipment ID number (absolute value) " command to Cool Muscle after

setting a proper baud rate. RS-485 communication will be canceled by setting K81=0.

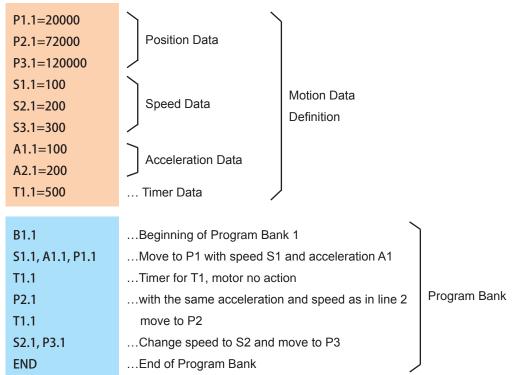
Example of transferring command : K81= 123 "{123"

K81= -123 "{123"

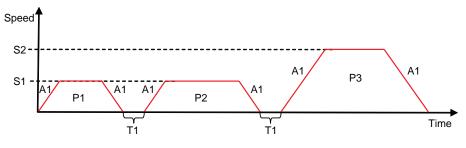
K82	Parity			Unit :
Set the parity when transferring data.				
			_	
	Value	Description		
	0	None		
	1	Even]	
	2	Odd		
		•	-	

Chapter 4 Sample Program

In this section, we will show some program examples by CML that is explained in the section 2.

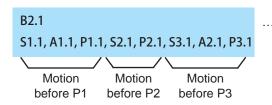

This section is comprehensive to learn basic to advanced CML.

* Please use Cool Muscle 2 alone since those are sample programs.


4.1. Various PTP motion

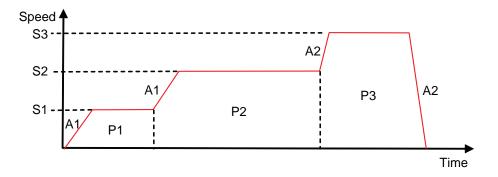
Using one motor, basic single axis point to point motion (one point on one straight line to another point) is executed.

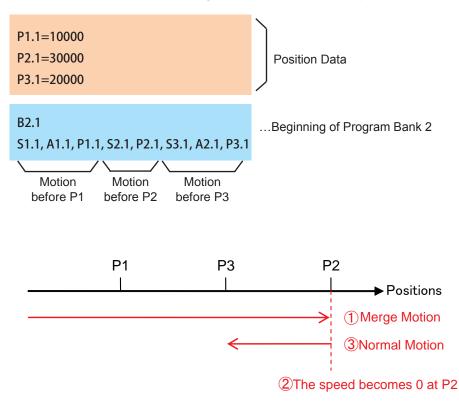
4.1.1. Basic PTP motion



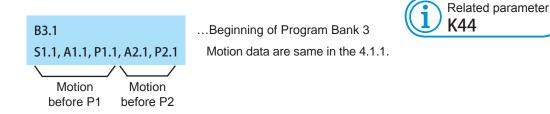
One line represents one motion. When speed and acceleration are not specified, the previously used speed and acceleration are applied. In the example above, the same acceleration A1 is used for the entire program and the same speed S1 is applied until the motor reaches P2 (line 4). In line 6, the speed changes to S2 and motor moves to P3.

077

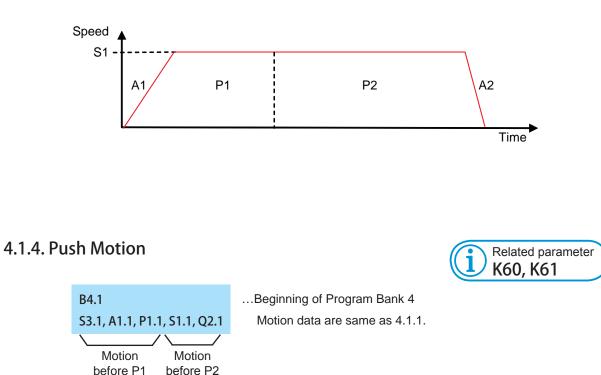

4.1.2. Merge Motion


...Beginning of Program Bank 2 Motion data are same as 4.1.1.

When multiple P commands are used in a single line, the motor does not stop at each position that is called merge motion. In Merge Motion, A and S commands can be specified, changing speeds and accelerations at passing points.

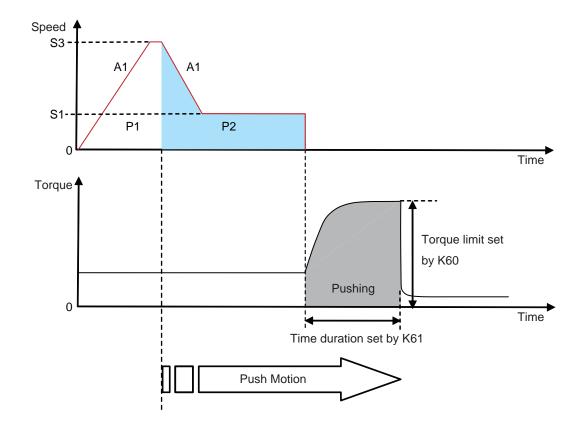

In the example program above, the motor passes P1 and P2 and moves to the final destination.

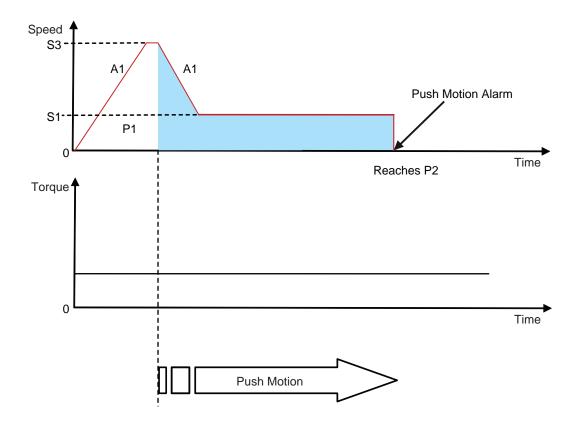
But when a movement direction is turn over, Merge Motion is removed and it performs normal motion.



4.1.3. PTP motion with different Accelerations and Decelerations

Acceleration and Speed remain the same unless specified otherwise.

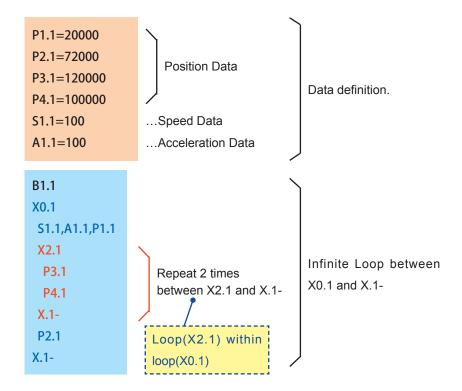

When multiple A commands are used in a single line, you can set accelerations and decelerations independently. As the chart below shows the motor reaches the final destination with a slow acceleration and a quick deceleration. Another way to set deceleration separately is to use parameter K44. (by a percentage of acceleration.)


Using Q command instead of P command, it performs Push Motion within the torque limit designed by parameters.

The CML program above shows the motion that the motor changes the speed to S1 at P1 and start performing Push Motion toward P2.

Torque limit and Push Motion duration time need to be defined by Parameter K60 and 61. The following charts show relationship between the motion and torque.

During the Push Motion, Cool Muscle 2 goes into an alarm state (Ux=256) being in Push Motion when reaches a target position by the reason that pushing object does not exist or push torque is too high.



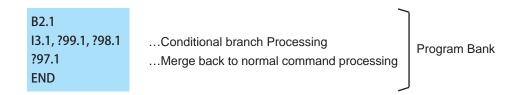
080

4.2. Various Processing

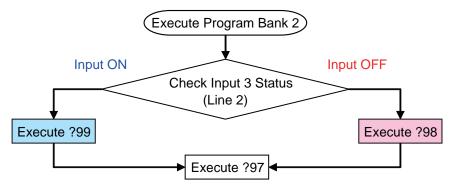
More complex CML program flows are introduced and described in this section.

4.2.1. Loop Processing

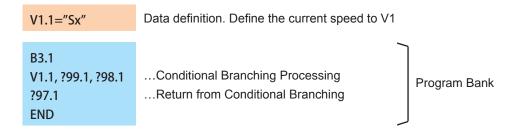
The lines between [X loop count . Motor ID] command and [X . Motor ID -] command are repeated the number of times that is specified by Loop Count. By using command X between loops, it performs multiple loops up to 10 classes.

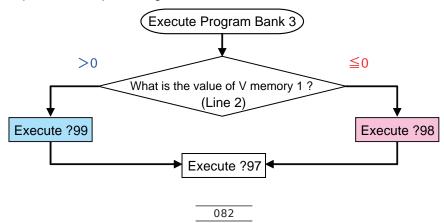

4.2.2. Basic Branch Processing

By specifying branching condition, different processes can be executed by conditions true or false.


When defining a branching processing as below, describe a condition (I or V command), true condition and false condition dividing with comma.

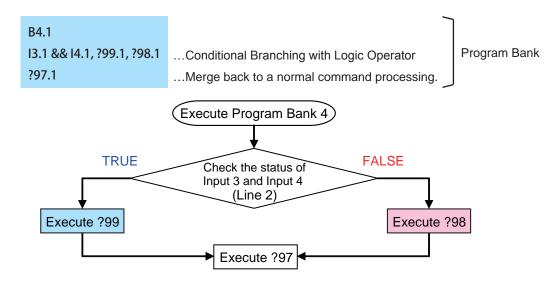
[Format] Branching Condition, True Condition, False Condition


When using I command, execute the conditional branching by the specified input status.


The flow of above CML program is as shown in below.

When using only V command, the branch processing depends the specified V data is larger than 0 or not. When larger than 0, execute the true condition otherwise false condition.

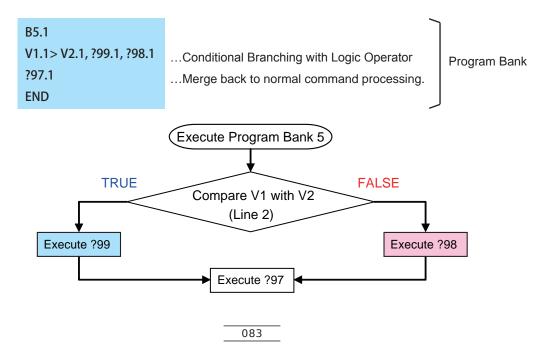
In the above program bank, execute the true condition when the current speed > 0, and the false condition when the current speed < 0. The processing shall be shown in below.


4.2.3. Branch Processing using Logic Operator

Using a logic operator, more complicated branch processing than the programs in section 4.2.2 is possible (Ref Section 6.7 for Mathematical Operator, Ref Section 6.8 for Logic Operator).

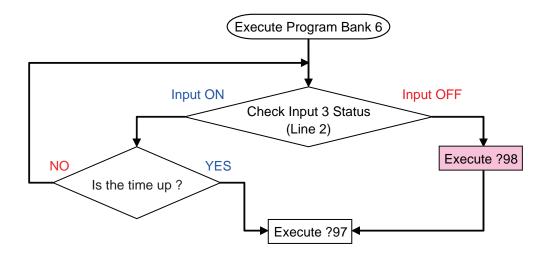
When executing branching processing, two conditions (I or V command), mathematical or logic operator between two conditions, true condition and false condition dividing by comma shall be described.

[Format] Branching Condition 1, Operation, Branching Condition 2, True Condition, False Condition.


A CML program example using the I command and its flow is as below.

The criteria of condition of 2 input status and Logic Operator is as shown in below.

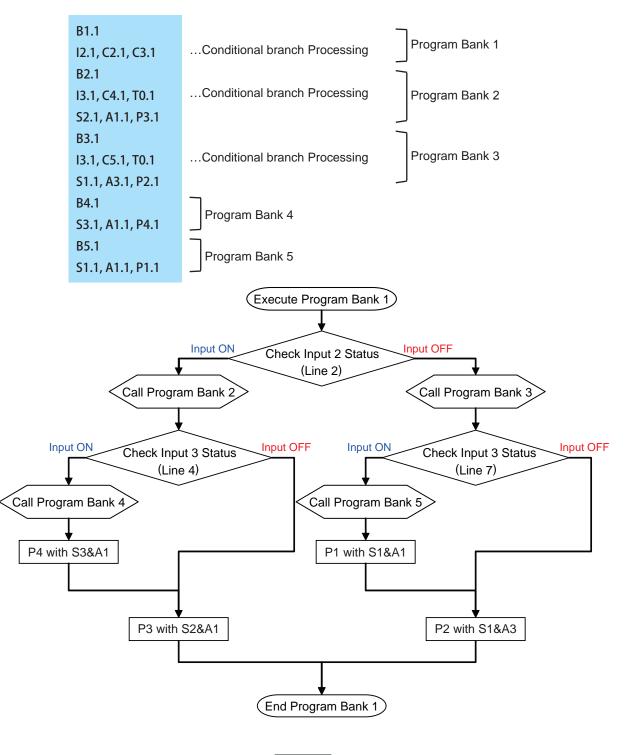
Logic	Operator	INPUT 2			Logic Operator		INPUT 2	
&&	(AND)	ON	OFF		(0	DR)	ON	OFF
INPUT 1	ON	TRUE	FALSE		INPUT 1	ON	TRUE	TRUE
	OFF	FALSE	FALSE			OFF	TRUE	FALSE


A CML program example using the V command as a condition and its flow is as below.

4.2.4. Branch Processing with Wait function

B6.1		
I3.1, W1, ?98.1	Branching with timer function	Program Bank
?97.1	Merge back to normal command processing.	

The W command can be used for branching with wait function (line 2). The motor waits for the time specified by the timer memory to pass and keeps on monitoring the status of the specified input for that duration. When the time is up, the motor finishes the branch processing and executes the next command line. The flow of the CML program above is as below.


4.2.5. Nesting

By using C command (call), Program Bank goes deeper and its depth is called "Nesting". Depending on how to compose of a program, the programming that a hierarchy becomes deeper is possible.

The maximum nesting level for COOL MUSCLE 2's programming is up to 10.

By combining nesting and branching, a specified program bank can be executed according to the specified input status.

The CML program below shows how one of the 4 program banks is executed according to the status of Input 2 and 3.

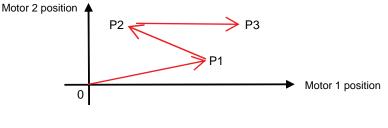
4.3. Controlling Multiple Motors

The CML program examples introduced in the section 4.1, 4.2 use a single motor. CML programs using multiple motors are introduced in this section.

To control multiple motors, various data and commands have to be defined for each motor.

4.3.1. Synchronized motion in Two Dimensions

P1.1=2500			
P2.1=1000			
P3.1=3000		Motor 1 Data definitions	
S1.1=200			
A1.1=100			
P1.2=1000			
P2.2=2000			
S1.2=100		Motor 2 Data definitions	
A1.2=50			
B1.1			Ì
A1.1, S1.1, P1.1, A1.2, S1.2, P1.2	1	Motor 1 and Motor 2 move to P1 at the same time	Program
P2.1, P2.2	1	Motor 1 and Motor 2 move to P2 at the same time	Bank 1
P3.1	1	Notor 1 moves to P2.	


Program description

Line 2 : Motor 1 and Motor 2 start to move at the same time. Motor 1 moves to position 2500 with the speed of 200 and acceleration of 100. Motor 2 moves to position 1000 with the speed of 100 and acceleration of 50.

Line 3 : Once both Motor 1 and Motor 2 complete the motion defined by line 2, Motor 1 and Motor 2 start to move at the same time. Motor 1 moves to position 1000 with the same speed and acceleration as in the previous motion. Motor 2 moves to position 2000 with the same speed and acceleration as in the previous motion.

The line 3 is not executed until both Motor 1 and Motor 2 complete the current motion (line 2). One motor waits until the motion of another is completed.

Line 4 : When Motor 1 and Motor 2 complete the motion defined by line 3 in Bank 1, only Motor 1 moves to position 3000.

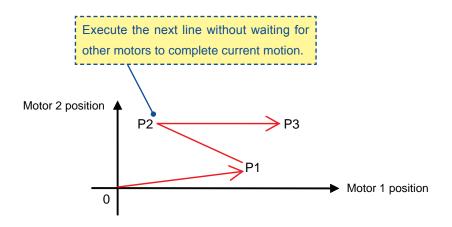
086

4.3.2. Non-synchronized motion in Two Dimensions

In the previous CML program example, either motor does not initiate the next motion until both motors complete the current motion. In this CML program, both motors independently initiate their own motion without waiting for the completion of motion each other.

B2.1	Use the same data as in section 4.3.1	Ì
A1.1, S1.1, P1.1, A1.2, S1.2, P1.2	Motor 1 and Motor 2 move to P2 at the same time.	Program
P2.1, Y2.2	Substitute Y command for P command to Motor 2	Bank 2
P3.1	Motor 1 moves without waiting for Motor 2	

Description of the program above


Line 3 : When Motor 1 and Motor 2 complete the current motion (line 2), then Motor 1 moves to P2 with the same speed and acceleration as in the previous line, and Motor 2 moves to P2 with the same speed and acceleration as in the previous line

Line 4 : Motor 1 starts to move to P3 without waiting for Motor 2 to reach P2 (line 3)

When Y command is used instead of P command, the command in the next line is enabled to execute without waiting for the completion of the motion by Y command.

For performing Push Motion, substitute Z command for Q command to allow the motor to perform the next motion independently.

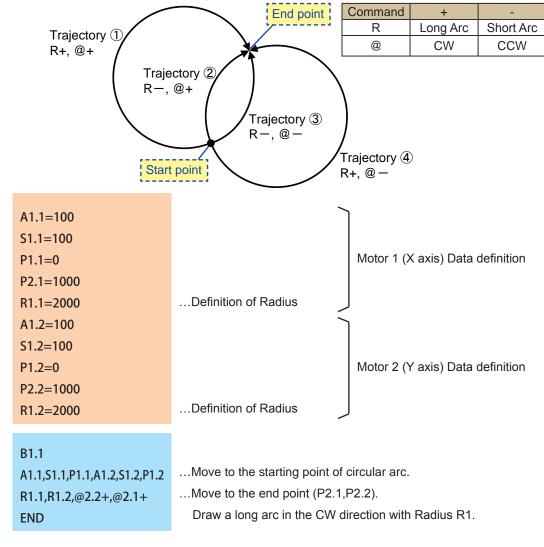
Note that the motor completes one motion before executing the next command when Y commands or Z commands is used continuously. In series of Y commands or Z commands, the last command is effective for non-synchronized motion, although commands other than the last one complete the positioning motion.

4.4. Interpolation (Optional: R Type only)

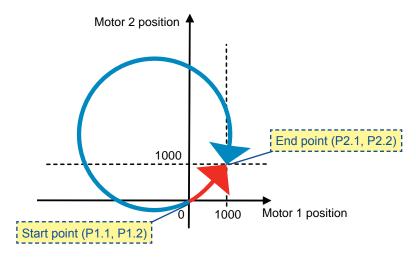
D

In this section interpolation programs for two motors are introduced. In order to make sure of synchronization, the condition that adjacent Motor IDs are assigned to two motors needs to be met.

Using two motors, assign the current position as a starting point, and set the end point by P command, then circular interpolation is possible with specifying radius or center point of circle. Linear interpolation is performed when radius is set to 0 (zero).


Interpolation should be performed by the adjacent motors for ensuring of synchronization. CM2 can operate merge motion, during even at the interpolation.

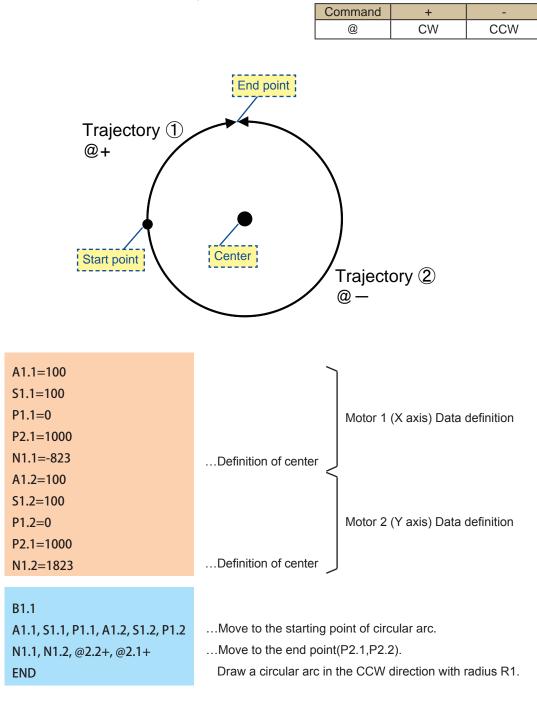
By using the "; " command, multiple commands can be concatenated in multiple lines.


4.4.1. Circular Interpolation by Specifying Radius

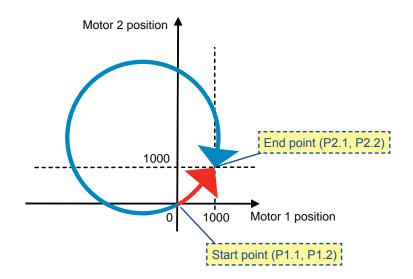
There are 4 different motion trajectories when starting point (current position), end point and radius are specified in the circular interpolation. See diagram below. Select one of the trajectories by combining R command (specify radius), @ command (execute interpolation) and + or - modifier.

In this case, the center of a circle is automatically calculated.

The Program Bank above draws a circular arc trajectory outlined in blue, where the modifier for R command is + (Long Arc) and the modifier for @ command is + (CW).


In contrast, the program below draws a circular arc trajectory outlined in red, where the modifier for R command is - (Short Arc) and the modifier for @ command is - (CCW).

32.1	
1.1,S1.1,P1.1,A1.2,S1.2,P1.2	Move to the starting point
R1.1-,R1.2-,@2.2-,@2.1-	Move to the end point (P2.1,P2.2).
ND	Draw a short arc in the CCW direction with radius R1.


4.4.2. Circular Interpolation by Specifying Center Point

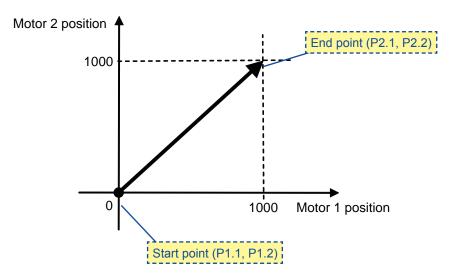
By specifying starting point (current position), end point and center point (N), circular interpolation is possible with the motors. There are 2 different motion trajectories by combining N command (specify center point), @ command (execute interpolation) and + or - modifier.

In this case, the radius of a circle is automatically calculated.

The program above draws a circular arc outlined in blue.

The program below draws a circular arc outlined in red.

B2.1	
A1.1,S1.1,P1.1,A1.2,S1.2,P1.2	Move to the starting point
N1.1,N1.2,@2.2-,@2.1-	Move to the end point (P2.1,P2.2).
END	Draw a circular arc in the CCW direction with radius R1.


4.4.3. Linear Interpolation

When R memory (radius data) is set to 0 (zero) in circular interpolation by specified radius, the motors perform linear interpolation.

Define the end point and set R memory to 0. The motors perform linear interpolation starting from the starting point (current position) to the end point. + or - modifier for R command and @ command do not affect the motion trajectory.

A1.1=100		
S1.1=100		
P1.1=0		Motor 1 (X axis) Data definition
P2.1=1000		
R1.1=0	Specify Linear interpolation	J
A1.2=100		
S1.2=100		
P1.2=0		Motor 2 (Y axis) Data definition
P2.1=1000		
R1.2=0	Specify Linear interpolation	J
B1.1		
A1.1,S1.1,P1.1,A1.2,S1.2,P1.2	Move to the starting point.	
R1.1,R1.2,@2.2,@2.1	Perform linear interpolation to	the end point (P2.1,P2.2).
END		

The program above draws a line outlined in black.

4.5. Ladder Logic Banks

In this section Ladder Logic Banks are introduced. Execution of commands in a Ladder Logic Bank does not accompany the motion of motor. Only mathematical and/or logic operations and branch processing are executed in the bank.

4.5.1. Basic Operations

1

L1.1		
V1=V1+V2	Add V2 to V1	7
V1>V3, V1=V3, T0	Branching without motion	
V1 <v4, t0<="" th="" v1="V4,"><th>Branching without motion</th><th>Ladder Logic Bank1</th></v4,>	Branching without motion	Ladder Logic Bank1
V3=V1	Set value of V1 to V3	
P1.1	Display P1 value	
END		

In describing a Ladder Logic Bank, place [L Bank No. Motor ID] at the beginning of bank and describe any command lines after that.

When P command is used in a Ladder Logic Bank, it does not cause any motion. It only displays the value of P memory.

As a Ladder Logic Bank is continuously executed in the period of time based on parameter K63, X command can not be available in Ladder Logic Bank.

Chapter 5 Setting Examples

In this section, parameter settings or procedures required for realizing various functions are described.

5.1. Manual Jog / Feed

[Manual Jog]

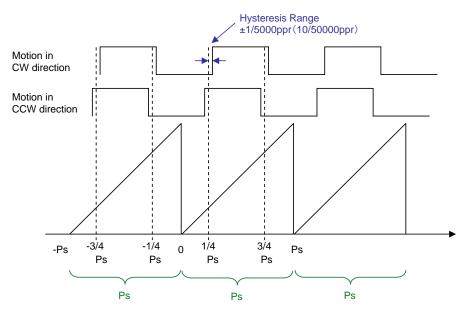
Manual jog makes the motor move incrementally by the number of pulses set by parameter, with each input of one-shot signal. This is useful for fine adjustments.

The setting of parameters is as below.

Parameter	Contents		
K28	Quick Response Rising Edge	Set to either of followings.	
K29	Quick Response Falling Edge 8 : Manual Jog in CW direction		
K31	Slow Response Rising Edge	, i i i i i i i i i i i i i i i i i i i	
K32	Slow Response Falling Edge	9 : Manual Jog in CCW direction	
K50	Number of pulses for one movement		

[Manual Feed]

Manual feed makes the motor move in a specified direction continuously while the signal is ON. The motor stops when the signal is OFF.


The setting of parameters is as below.

Parameter	Contents		
K27	at the Quick Response Target Voltage	Direction of continuous rotation	
K30	at the Slow Response Target Voltage	3 : CW direction, 4 : CCW direction	
K49	Manual Feed Speed		

5.2. Rotation Pulse Output

The motor's current position shall be divided by the range of K24 value, the output will be ON at the first half of set position by K24 then OFF at the last half.

However the output timing will be different in CW and CCW direction because the threshold for output signal ON and OFF has plus minus 1/5000ppr (plus minus 10/50000ppr) hysteresis to the noise.

Parameter	Contents	
	Output Functions [7: Rotation Pulse Output]	
K34	In case of Quadrature Encoder Output, both Output 1 Function and	
	Output 2 Function should be set to 7.	
K24	Position interval (number of pulses) for Rotation Pulse Output	
K33	Output logic by ON or OFF.	

Depending on the value of parameter K24 and the rotation speed of motor, the time interval of output pulse may be less than 0.5 msec.

In that case, the Rotation Pulse could not be output correctly.

5.3. Origin Search

Origin Search can be executed by transmitting "| (bar)" command or by using the input to which Origin Search Start Function is assigned through setting "7" in parameter K28, K29, K31 or K32.

Origin Search operates according to the following parameter setting.

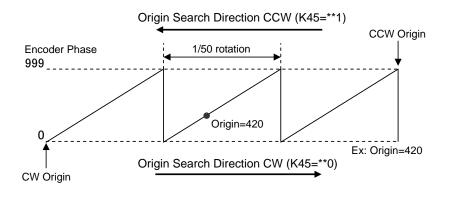
Parameter	Contents
K42	Speed for Origin Search
K43	Acceleration for Origin Search
K45	Origin Search Direction : CW or CCW
K46	Origin Signal Source
K48	Offset Distance Between Machine Origin and Electrical Origin

Besides, "Origin Signal Source" of parameter K46 and related parameter settings are necessary.

5.3.1. Origin Search using Stopper

6

The following parameter setting is also necessary for the Origin Search by Stopper.


Parameter Contents		Contents
	K46	Origin Signal Source 0 or 1: Origin Search by Stopper
	K47	Torque Level when searching for origin using a Stopper

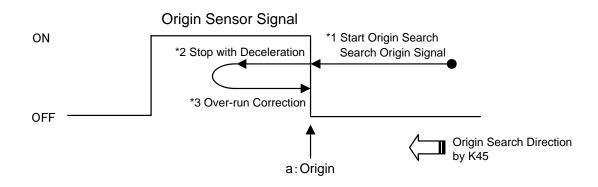
Origin Search completes when the torque pushing against the stopper reaches the set level by K47 and the speed goes 1/16 below the set speed by K42. Then the encoder phase value will be displayed.

For the stable origin search, adjust an attachment as a coupling for the encoder phase value indicated in "Origin=* * * " to be between 200 and 800.

The encoder phase will straightly changes from 0 to 999 per 1/50 rotation.

When the completion of Origin Search, in-position signal will be output and the motor stops at the encoder phase 0 point that is 1 cycle ahead of completion.

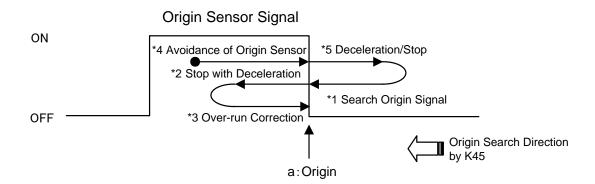
5.3.2. Origin Search using Sensor


The following parameter setting is also necessary for the Origin Search by sensor.

Parameter Contents	
	Input Functions at the Quick Response Target Voltage "2 : Origin Sensor"
K27	Do not set "2 : Origin Sensor" to multiple inputs to prevent abnormal detection of
	the origin sensor signal caused by the conflict between the inputs.

Moreover, depending on the status of origin sensor signal input when origin search starts, there are the following differences in the movement of origin search.

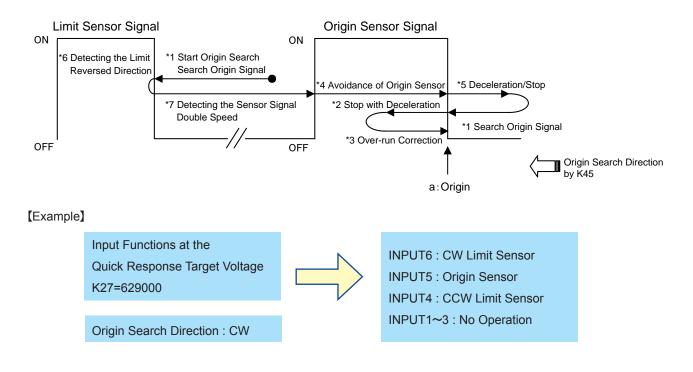
[When an origin sensor signal is OFF]


Start Origin Search, move in the direction set by K45, start deceleration at the rising edge of sensor signal and stop. Complete origin search after returning to the point a.

[When an origin sensor signal is ON]

For detecting the rising edge of sensor signal to be possible, move in the opposite direction from what is set by K45 to turn off a sensor signal.

When passing the point a in the figure, start to decelerate after detecting a sensor signal off, then the same motion as "When an origin sensor signal is OFF" in the previous paragraph will be executed.

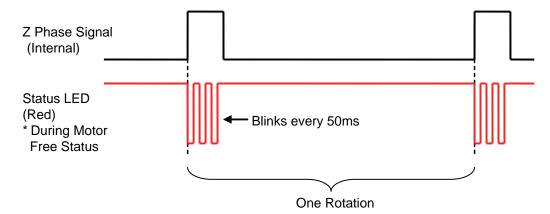


[Use of Limit Sensor concurrently]

Parameter Contents	
K27	Input Functions at the Quick Response Target Voltage
	"6 : CW Limit Sensor" or "9 : CCW Limit Sensor"

It will be operated as below when the Limit Sensor in the same direction as an origin search is assigned to another input.

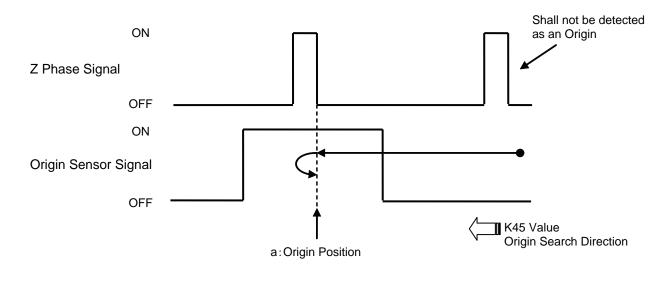
Start Origin Search, move in the direction set by K45. After detecting the limit sensor signal, start to move in the reverse direction. Move at the double speed of what is set by K42, and detect the origin sensor signal. After detecting the origin sensor signal, then the same motion as "When an origin sensor signal is ON" in the previous paragraph will be executed.


5.3.3. Origin Search with Z Phase Signal

The following parameter setting is also necessary for the Origin Search with Z Phase Signal.

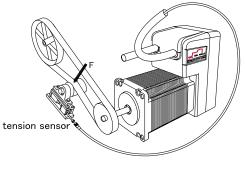
Parameter	Contents
K46	Origin Signal Source 4-7: Z Phase Signal

Z Phase Signal is the signal generated by an internal position sensor of Cool Muscle 2 and output once per rotation. Usage of Z Phase Signal to detect an origin makes a precise origin search possible that always detects the same origin without an external origin sensor even in a rotary motion. The sequence for the origin search is the same as the origin search with sensor.


When the motor free by the command ") " or an input function, the status LED shall be on all the time but when the Z Phase Signal is selected by K46, the status LED shall blinks quickly only during the Z Phase Signal is output.

[Concurrent Usage with an Origin Sensor Signal]

it is possible to detect an origin by a combination with the Z Phase signal and an origin sensor signal. Therefore an origin search with better repeat accuracy is possible.


The sequence of the Origin Search is the same as the Origin Search by sensor but the origin shall be the position where the effective edges of both a Z Phase signal and an origin sensor signal are detected.

099

5.4. External Encoder

The full closed-loop position control is available by using the output signal of external encoder equipped for the control target. It is possible to be compatible with the compensation for belt-slipping or backlash of gears, or position control for the stage with linear encoder.

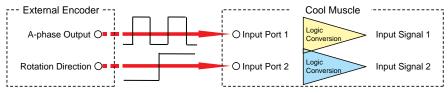
When applying an external encode, the following parameter settings are needed.

Parameter	Contents
K71	External Encoder Type
K72	External Encoder Resolution

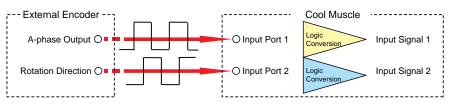
The outputs of external encoder are connected with Input port 1 and Input port 2 of Cool Muscle. Therefore the input functions assigned to Input 1 and Input 2 through parameter settings of K27 – K32 are not available.

[Signals connection between external encoder and Cool Muscle]

Configure the effective edge of input pulse signal by setting of parameter K26.


[A-phase signal: pulse input]

Every rising edge of input pulse, pulse counting is performed with either counting-up when moving with increasing position, or countdown when moving with decreasing position. The effectiveness of pulse is determined only at the rising edge of input signal, miscounting caused by noise or vibration of load axis could occur.


[A-phase signal: pulse input, B-phase signal: rotation direction]

Every rising edge of input pulse, either counting-up or countdown is performed in accordance with the rotation direction signal of external encoder. The effectiveness of pulse is determined only at the rising edge of input signal, miscounting caused by noise or vibration of load axis could occur.

[A-phase signal: pulse input, B-phase signal: pulse input]

When two-phase signal, of which phase is shifted by 90 degree each other, is input to Input 1 and Input 2, pulse counting is performed with automatically discriminating whether counting-up or countdown.

*Refer to Parameter K71 for detail information such as the timing of counting.

5.4.1. External Encoder / Index Operation

The motor continues to rotate until the count of external encoder pulse reaches the specified number of pulses.

Then, the motor stops to rotate when count value reaching the specified number of pulses. (Recovering operation for the amount of overrun is not supported.)

This operation is appropriate for the equipment such as winding machine, where a fixed amount is required to be wound without slack in a fixed direction.

*In Index Operation, the motor operation is not affected by the setting for External Encoder Resolution (K72).

[Example of Use]	
Set the parameter K71 acc	ording to the pulse type of external encoder.
K71.1=1	: A-phase Index
Set the data of position, speed	and acceleration in the same manner as in normal positioning, and execute the operation.
P.1=10000	: Set the target position of load for the position data.
S.1=10	: Set the speed of Cool Muscle.
A.1=100	: Set the acceleration of Cool Muscle.
^.1	
The motor continues to rotat	te at a set speed of S until the count value of external encoder pulse reaches 10000.
Then, the rotation stops wh	nen the count value reaching 10000.
Although the actual count	could overrun for the target position at this time, the motor stops right there

Although the actual count could overrun for the target position at this time, the motor stops right there without recovering operation for the amount of overrun.

It is possible to confirm the current count value of external encoder with using query command "?76".

?76.1 : Transmission command to Cool Muscle

Ecnt.1=10005 : Receiving data from Cool Muscle

5.4.2. External Encoder / Feedback Operation

The whole system can be controlled as a full closed-loop system by utilizing the feedback pulse from external encoder equipped for the control target.

 [Example of Use]

 Set the pulse type and resolution of external encoder.

 K71.1=4
 :A&B phase feedback

 K72.1=1000
 :1,000 ppr

 Set the data of position, speed and acceleration in the same manner as in normal positioning, and execute the operation.

 P.1=10000
 : Set the target position of load for the position data.

 S.1=10
 : Set the speed of Cool Muscle.

 A.1=100
 : Set the acceleration of Cool Muscle.

 ^.1
 .1

With tracking the command value, the feedback control for the position of control target is performed.

It is possible to confirm the current count value of external encoder with using query command "?76".	
?76.1	: Transmission command to Cool Muscle
Ecnt.1=10000	: Receiving data from Cool Muscle

101

5.4.3. External Encoder / Pulse-Counting Operation

The counting operation of pulses input to Cool Muscle from an external encoder is simply performed. The motor operates in the same manner as in normal positioning.

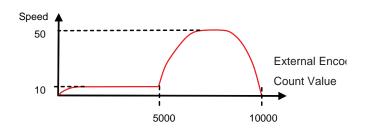
This operation is used for the control with responding to amount of movement or speed of control target.

[Example of Use]

In the following example, with using the Ladder Logic Bank described in the section 2.2.3, the motor speed can be changed according to the count of pulses from external encoder equipped for the control target.

Change the setting of General Variable 1, from V1.1="Px" (current position) to V1.1="Ecnt" (External Encoder Count).

V1.1 = "Ecnt" : Set the current count value of external encoder into General Variable 1. Other settings and the definition of Ladder Logic Bank is the same as in section 2.2.3.


After completing all the definitions, execute the Ladder Logic Bank 1 through inputting the command as below. [L1.1

Operate the motor in the Direct Mode as follows.

A.1=100 P.1=10000 ^.1

In this example, the motor operates at the speed of 10 when the count value of external encoder is less than 5000, shown in the right.

However, it operates at the speed of 50 when the count value is over 5000.

5.5. Torque feedback control

The torque feedback control is available for applications such as push control common in pneumatic sliders or constant tension control.

It is needed to specify positions and speeds because the control is performed during the positioning operation.

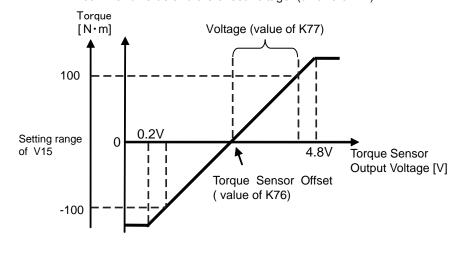
Parameter	Contents
K38	Target controlled by Analog Input
K74	Proportional Gain for Torque Control
K75	Integral Gain for Torque Control
K76	Torque Sensor Input offset value
K77	Input range for Torque Sensor Signal

When applying torque feedback control, the following parameter settings are needed.

[Example of Setting]

Set Torque Feedback Control into parameter K38, "Target controlled by Analog Input".

K38.1=10 : Setting the target controlled by Analog Input

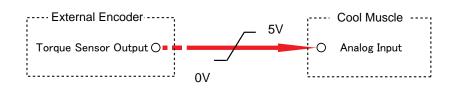

Next, set K76, "Torque Sensor Input offset value", and K77, "Input Range for Torque Sensor Signal".

In the torque feedback control, the motor output can be controlled in accordance with K74 "Proportional Gain for Torque Control" and K75 "Integral Gain for Torque Control", for the feedback data from external torque sensor to track the torque command value specified in the range $0 - \pm 100$ by using General Variable 15.

When using the torque sensor with output of 1[V] per $0.2[N \cdot m]$ and offset voltage of 2.5[V], the controllable range is $0 - \pm 0.46[N \cdot m]$ because the analog input voltage is in the range of 0.2[V] - 4.8[V].

For example, the torque command value is required to be maximized (V15=100) when the detected torque of sensor is 0.4[N•m], set parameters as below.

- K76.1=250 : Set the offset voltage for Torque Sensor Input. (unit : 0.01 V)
- K77.1=200 : Set the difference between the output voltage of torque sensor at maximum torque command value and the offset voltage. (unit : 0.01 V)



At last, set the torque command value and operation range for torque feedback control. The torque command value is set into the General Variable 15 in the range $0 - \pm 100$.

For example, Cool Muscle operates at the speed of 60[min-1] from current position to the position of 10000 pulses, meanwhile the load torque is required to be controlled with the constant torque of 0.1[N•m], set as below.

V15 = 25	: Setting for torque command value $(0.1[N-m]/0.4[N-m] \times 100)$
S0 = 100	: Speed setting for Cool Muscle (at resolution[K37]=3)
P0 = 10000	: Setting for target position

After completing every setting, input the output voltage of torque sensor to Analog Input of Cool Muscle, and start operation. Torque feedback control is performed until Cool Muscle reaching the position of 10000.

5.6. Modbus Protocol

Modbus protocol is the communication protocol which has developed by Modicon Inc. for PLC applications. Modbus protocol, of which specifications have got open worldwide, is widely used in the FA or PA field due to its simple transmission structure.

Cool Muscle supports Modbus protocol and can be directly connected to Modbus compatible devices with not using the communication converter but just setting the following parameters.

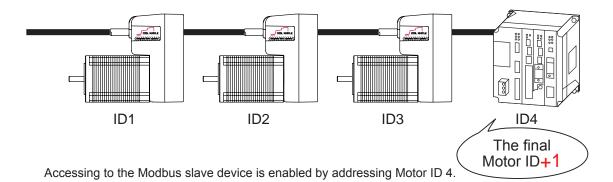
Parameter	Contents
K20	Communication baud rate (Modbus host \rightarrow Cool Muscle)
K65	Slave-to-slave communication baud rate (Cool Muscle \rightarrow Modbus Slave)
K78	Modbus host communication address (set -1 when not used)
K79	Modbus slave communication – input address (set -1 when not used)
K80	Modbus slave communication – output address (set -1 when not used)
K81	Slave address
K82	Parity

In the Modbus protocol, there are a host and a slave necessarily and the communication can be established through a response of the slave to a communication request from the host.

Cool Muscle can communicate either as a host or as a slave.

[Modbus Host Communication]

Cool Muscle can be used as a Modbus slave by connecting a Modbus host device to the host communication side of Cool Muscle. The host device can transmit commands to Cool Muscle, and read or write the data of Cool Muscle.


[Modbus Slave Communication]

Cool Muscle can be used as a Modbus host by connecting a Modbus slave device to the slave communication side of Cool Muscle. The I/O control or the status read of a slave device can be performed by Cool Muscle.

In the Modbus slave communication, a slave device can be treated as it exist on the daisy-chained network of Cool Muscles through automatically generating a Modbus message from some CML commands related to I/O. Accessing to a Modbus slave device can be performed by assigning the final Motor ID + 1 for the CML command.

[Example]

When connecting a Modbus slave device onto the daisy-chained network of three axes.

5.6.1. Message Transmission Mode

Modbus protocol equipped in Cool Muscle performs the message transmission in RTU (Remote Terminal Unit) mode.

Item		Contents	
Communication method		Half-duplex, Asynchronous method	
Communication F	Protocol	Modbus RTU mode	
		9.6K, 19.2K, 38.4K, 57.6K, 115.2K, 230.4	
Transmission Spe	eed	Kbps	
		(Set by parameter K20 or K65)	
Transmission Co	de	Binary	
Error check	Vertical	Parity	
(Error detection)	Horizontal	CRC-16	
	Start Bit	1 bit	
Character	Data Length	8 bits	
	Dority Dit	None/even/odd	
configuration Parity Bit		(Set by parameter K82)	
Stop Bit		1 bit	
Time Interval between Data		Less than 8 byte times	

5.6.2. Time Interval between Data

When transmitting a message, be sure that the time interval between data constructing a message must not exceed 8 byte times. If a greater interval than specified time occurs, Cool Muscle assumes a transmission has terminated and performs reception of an illegal message.

Baud Rate	Time Interval between	
	Data	
9.6Kbps	Less than 6.66msec	
19.2Kbps	Less than 3.33msec	
38.4Kbps	Less than 1.66msec	
57.6Kbps	Less than 1.11msec	
115.2Kbps	Less than 0.55msec	
230.4Kbps	Less than 0.27msec	

5.6.3. Message Framing

The Modbus message is constructed as below.

Slave Address	Function Code	Dete	Error Check	
(8 bits)	(8 bits)	Data	CRC-16 (16 Bits)	

Slave Address

The slave address is specified in the range of 1 - 247 decimal by parameter K81.

The broadcast mode (slave address 0) is not available.

Function Code

The function code is classified in outline as below. Refer to section 5.6.4 for detail information.

Code	Function	Remarks
01	Read the status of slave output	only in the slave communication
02	Read the status of slave input	only in the slave communication
03	Read the motor status	only in the host communication
04	Read the I/O status	only in the host communication
05	Single ON/OFF for slave outputs	only in the slave communication
15	Multiple ON/OFF for slave outputs	only in the slave communication
16	Command transmission to Cool Muscle	only in the host communication

Data

The data field is constructed differently according to the function code. Refer to section 5.6.4 "Function Code" for detail information.

Error Check

The 16-bit error checking code generated by CRC-16 method is appended as the last field in the message.

5.6.4. Function Code

In case of using the following parameter settings, an example of a response to each function code is shown as below.

(The slave device ID is 4 when in the Modbus slave communication.)

Parameter	Contents	Set value
K78	Modbus host communication address	100
K79	Modbus slave communication - input address	200
K80	Modbus slave communication - output address	300
K81	Slave address	1

【Function Code: 01 (0x01)】

Function

The output status in the slave can be read.

This function is supported only in the Modbus slave communication.

• Transmission Message

The transmission message to the slave is generated automatically through transmitting Output Status -Query Command "?50.n" to Cool Muscle. (n = the final Motor ID + 1 : indicating the Modbus slave device ID) The number of Read Registers is fixed to 16.

Example : a transmission message to the slave when "?50.4" has transmitted to Cool Muscle.(automatic generation)

When the starting address is set to 300 (0x2C hex) by K80, the 16 output status are read from address 301 in a slave device.

Field Name	Contents (Hex)	Remarks	
Slave Address	0x01	Set by K81	
Function Code	0x01		
Starting Address (Hi)	0x01	Set by K80	
Starting Address (Lo)	0x2C	Set by Rou	
Number of Registers (Hi)	0x00	Fixed	
Number of Registers (Lo)	0x10	Fixed	
Error Check	CRC (16 bits)		

Response

The response from the slave is interpreted by Cool Muscle automatically.

[Function Code : 02 (0x02)]

Function

The output status in the slave can be read.

This function is supported only in the Modbus slave communication.

• Transmission Message

The transmission message to the slave is generated automatically through transmitting Output Status -Query Command "?50.n" to Cool Muscle. (n = the final Motor ID + 1 : indicating the Modbus slave device ID) The number of Read Registers is fixed to 16.

Example : a transmission message to the slave when "?50.4" has transmitted to Cool Muscle.(automatic generation)

When the starting address is set to 300 (0x2C hex) by K80, the 16 output status are read from address 301 in a slave device.

Field Name	Contents (Hex)	Remarks	
Slave Address	0x01	Set by K81	
Function Code	0x02		
Starting Address (Hi)	0x00	Set by K70	
Starting Address (Lo)	0xC8	Set by K79	
Number of Registers (Hi)	0x00	Fixed	
Number of Registers (Lo)	0x10	Fixed	
Error Check	CRC (16 bits)		

Response

The response from the slave is interpreted by Cool Muscle automatically.

[Function Code : 03 (0x03)]

Function

The specified register address (the current motor information) can be read.

This function is supported only in the Modbus host communication.

The number of data bytes is four.

Motor Information to be read	Register Address	Corresponding CML
Position Deviation	K78 setting	?95
Current Position	value of K78 +2	?96
Current Speed	value of K78 +4	?97
Current Torque	value of K78 +6	?98
Motor status	value of K78 +8	?99

Motor Information to be read	Register Address	Corresponding CML
V0	value of K78 +10	V0
V1	value of K78 +12	V1
V2	value of K78 +14	V2
V3	value of K78 +16	V3
V4	value of K78 +18	V4
V5	value of K78 +20	V5
V6	value of K78 +22	V6
V7	value of K78 +24	V7
V8	value of K78 +26	V8
V9	value of K78 +28	V9
V10	value of K78 +30	V10
V11	value of K78 +32	V11
V12	value of K78 +34	V12
V13	value of K78 +36	V13
V14	value of K78 +38	V14
V15	value of K78 +40	V15

Transmission Message

Example : a transmission message to Cool Muscle when reading the current position.

Note that the number of registers is 2 and the starting address is 101(0x65 hex : value of K78 + 1).

Field Name	Contents (Hex)	Remarks
Slave Address	0x01	Set by K81
Function Code	0x03	
Starting Address (Hi)	0x00	
Starting Address (Lo)	0x65	
Number of Registers (Hi)	0x00	Fixed
Number of Registers (Lo)	0x02	Fixed
Error Check	CRC (16 bits)	

Response

Here is an example of a response from Cool Muscle. The slave address and the function code are echoed

back without modification	. The	number	of	data	bytes	is	four.
---------------------------	-------	--------	----	------	-------	----	-------

Field Name	Contents (Hex)	Remarks
Slave Address	0x01	
Function Code	0x03	
Number of Data Bytes	0x04	Fixed
Data1 (Hi)	0x00	
Data1 (Lo)	0x01	
Data2 (Hi)	0x86	
Data2 (Lo)	0xA0	
Error Check	CRC (16 bits)	

In above example, the current position is 0x000186A0 (hex), representing 100000 decimal.

[Function Code : 04 (0x04)]

Function

The I/O and the status information can be read.

This function is supported only in the Modbus host communication.

Motor Information to be Read	Register Address	Corresponding CML
Input Status	K78 setting	?70.n
(ID1~ID15)	~ K78+14	(n : Motor ID)
Output Status	K78 setting +16	?50.n
(ID1~ID15)	~K78+30	(n : Motor ID)
Motor Status	K78 setting +32	?99.n
(ID1~ID15)	~ K78+46	(n : Motor ID)

• Transmission Message

Example : The transmission message to read the 3 input status of ID3 - ID5

The set value of K78 represents ID1, so that ID3 is the set value of K78 + 2.

Note that the starting address is 102 (0x66 hex), which indicates ID3.

Field Name	Contents (Hex)	Remarks
Slave Address	0x01	Set by K81
Function Code	0x04	
Starting Address (Hi)	0x00	
Starting Address (Lo)	0x66	
Number of Registers (Hi)	0x00	
Number of Registers (Lo)	0x03	
Error Check	CRC (16 bits)	

Response

Here is an example of a response from Cool Muscle.

The slave address and the function code are echoed back without modification.

Field Name	Contents (Hex)	Remarks
Slave Address	0x01	
Function Code	0x04	
Number of Data Bytes	0x06	
Data1 (Hi)	0x00	
Data1 (Lo)	0x3F	
Data2 (Hi)	0x00	
Data2 (Lo)	0x02	
Data3 (Hi)	0x01	
Data3 (Lo)	0xFF	
Error Check	CRC (16 bits)	

[Function Code : 05 (0x05)]

Function

Turning ON/OFF the single output in the slave can be performed. This function is supported only in the Modbus slave communication.

• Transmission Message

The transmission message to the slave is generated automatically through transmitting Output ON/OFF Command "O#.n" or t"F#.n" to Cool Muscle. (n = the final Motor ID + 1 : indicating the Modbus slave device ID)

Example : A transmission message to the slave when transmitting "O7.4" to Cool Muscle. (automatic generation)

Note that the starting address is 206 (0xCE hex), which is the 7th since address 200 (set value of K80) of a slave device.

Field Name	Contents (Hex)	Remarks
Slave Address	0x01	Set by K81
Function Code	0x05	
Starting Address (Hi)	0x00	
Starting Address (Lo)	0xCE	
Preset Data (Hi)	0x00	Command O : 1
Preset Data (Lo)	0x01	Command F : 0
Error Check	CRC (16 bits)	

Response

The response from the slave is interpreted by Cool Muscle automatically.

【Function Code: 15 (0x0F)】

Function

Turning ON/OFF the multiple outputs in a slave device simultaneously. This function is supported only in the Modbus slave communication.

• Transmission Message

The transmission message to the slave is generated automatically through transmitting Output ON/OFF Command "O#.n=X" to Cool Muscle. (n = the final Motor ID + 1 : indicating the Modbus slave device ID, X=output status) The number of registers is fixed to 16 and the number of bytes is fixed to 2.

Here is an example of setting the 16 output status from address 301 in a slave device, as below.

2 313 314 315 31
F OFF OFF OFF OF
0 0 0 1
$\overline{}$
1
)F 0

The data is 0xCD01 hex, so that the data to be set to the output status is 52481 decimal.

Example : The transmission message to the slave when transmitting "O.4=52481" to Cool Muscle.

(automatic	generation)
------------	-------------

Field Name	Contents (Hex)	Remarks
Slave Address	0x01	Set by K81
Function Code	0x05	
Starting Address (Hi)	0x01	Sat by K80
Starting Address (Lo)	0x2C	Set by K80
Number of Registers (Hi)	0x00	Fixed
Number of Registers (Lo)	0x10	Fixed
Number of Bytes	0x02	Fixed
Preset Data (Hi)	0xCD	
Preset Data (Lo)	0x01	
Error Check	CRC (16 bits)	

Response

The response from the slave is interpreted by Cool Muscle automatically.

[Function Code : 16 (0x10)]

Function

The designated command can be transmitted to Cool Muscle.

Function	Register Address
CML Command	K78 setting +100
Transmission	

Transmission Message

Example : The transmission message of Position Counter Reset Command "|2" when K78=100.

Field Name	Contents (Hex)	Remarks
Slave Address	0x01	
Function Code	0x10	
Starting Address (Hi)	0x00	
Starting Address (Lo)	0xC8	
Number of Registers (Hi)	0x00	
Number of Registers (Lo)	0x02	
Number of Bytes	0x04	
Data1 (Hi)	0x7C	
Data1 (Lo)	0x32	2
Data2 (Hi)	0x0D	CR
Data2 (Lo)	0x00	Pad with 0
Error Check	CRC (16 bits)	

Note that the starting address is 200 (=100+100).

Response

When the message is received correctly, the response is performed by returning the copy of the

Field Name	Contents (Hex)	Remarks
Slave Address	0x01	
Function Code	0x10	
Starting Address (Hi)	0x00	
Starting Address (Lo)	0xC8	
Number of Registers (Hi)	0x00	
Number of Registers (Lo)	0x02	
Error Check	CRC (16 bits)	

transmission message with the number of bytes and data area removed.

5.6.5. Exception Responses

When a message has transmitted from a Modbus host device, if a slave device receives the massage normally, it returns a normal response. However, it will return an exception response if abnormal event occurs, as below.

The exception response has the following configuration.

Slave Address	Function Code	Exception Code	Error Check
(8 bits)	(8 bits)	(8 bits)	CRC-16 (16 bits)

A slave address is placed in the slave address field as well as in the normal response.

A function code, the value of function code of transmission message + 0x80 hexadecimal, is placed in the function code field.

Function Code	Function Code +0x80
03 (0x03)	0x83
04 (0x04)	0x84
16 (0x10)	0x90

The exception code is shown below.

Exception Code	Name	Meaning				
01	Illegal Function	The relevant function is not supported.				
02	Illegal Data Address	The designated data address is non-existent.				

5.6.6. Termination of Modbus Mode

The normal RS-232C communication cannot be performed under the Modbus host communication.

Cool Muscle can terminate the Modbus communication mode and perform the normal RS-232C communication through the setting of K81=0 by a Modbus compatible device.

If the Modbus communication mode is required to be terminated by a Modbus incompatible device or the mode has been set accidentally, it is possible to terminate the Modbus mode and perform normal RS-232C communication temporally, through transmitting "FFFFFFFF" (transmitting F nine times continuously) to Cool Muscle after confirming that the communication baud rate is correct.

In this state, the Modbus communication mode will be terminated by the setting of K81=0.

Chapter 6 CML List

6.1. K Parameter

К	Parameter	Min	Max	Default	Unit	Description
20	Baud Rate	0	5	0	-	The communication baud rate between Cool Muscle and a host. 0: 38.4Kbps, 1: 9.6 Kbps, 2: 19.2 Kbps, 3: 57.6 Kbps, 4: 115.2 Kbps, 5: 230.4 Kbps
23	Status Report	0	31	1	-	Event selection for status report setting for Local Echo, confirmation/error messages. 0: No status report 1: In-position and alarm 2: Input status change 4: Output status change 8: No Local Echo 16: Confirmation / error messages
24	Rotation Pulse Output	10	32767	1000	pulses	Output ON/OFF at regular intervals with pulses.(set K34=7) When both Output 1 and Output 2 in K34 values are set to 7, quadurature encoder pulse is output.
25	Delay Time for Slow Response Signal	111111	999999	333333	0.1sec	The delay timel for slow response signal. Each digit must be set individually and assigns Input 6, 5, 4, 3, 2, 1.
26	Input Logic / P type Operation	000000	333333	000000	-	 Input Logic and Execution of P type Operation Each digit must be set individually and assigns Input 6, 5, 4, 3, 2, 1. (1) Input Logic or 2 : Input signal is ON when Input port is ON. (P type effective edge: rising edge) 1 or 3 : Input signal is ON when Input port is OFF. (P type effective edge: falling edge) (2) Execution of P type operation (Apply to C/R type) Set the value "2" or "3" of Input 3 to Input 6 : When Input Signal is ON, P type operation is valid and accept the Pulse signal. When Input Signal is OFF, P type operation is Invalid and refuse the Pulse signal. Set the value "2" or "3" of Input 1 or Input 2 : CM2 operates P type operation when setting values are "2" or "3" to two or more input, during input signal is ON at either Input 1 or Input 2.

к	Parameter	Min	Max	Default	Unit	Description
27	Input Functions at the Quick Response Target Voltage	000000	999999	000000	_	Assign functions at target voltage level of quick response signal. Each digit must be set individually and assigns Input 6, 5, 4, 3, 2, 1. 0: No function 1: General Use 2: Origin sensor signal 3: Manual feed CW 4: Manual feed CCW 5: Stop Ladder Logic Bank 6: CW direction limit sensor (Dual usage as CW origin sensor) 7: Emergency stop 8: Terminate the Program Bank (same as]]) 9: CCW direction limit sensor (Dual usage as CCW origin sensor)
28	Input Function at Rising Edge of Quick Response Signal	000000	999999	000000	-	Assign functions at rising edge of quick response signal. Each digit must be set individually and assigns Input 6, 5, 4, 3, 2, 1. 0: No function 1: Alarm reset/Program Bank Pause 2: Motor free 3: Position counter reset 4: Execute next Program Bank line 5: Execute previous Program Bank line 6: Execute Program Bank 1 7: Start origin search 8: Manual jog CW (K36=2 or 3, execute Program Bank 2) 9: Manual jog CCW (K36=2 or 3, execute Program Bank 3)
29	Input Function at Falling Edge of Quick Response Signal	000000	999999	000000		Assign functions at falling edge of quick response signal. Each digit must be set individually and assigns Input 6, 5, 4, 3, 2, 1. 0: No function 1: Alarm reset/Program Bank Pause 2: Enable motor 3: Position counter reset 4: Execute next Program Bank line 5: Execute previous Program Bank line 6: Execute Program Bank 1 7: Start origin search 8: Manual jog CW (K36=2 or 3, execute Program Bank 2) 9: Manual jog CCW (K36=2 or 3, execute Program Bank 3)

К	Parameter	Min	Max	Default	Unit	Description
30	Input Functions at Slow Response Target Voltage		999999	000000	_	Assign functions at target voltage level of quick response signal. Each digit must be set individually and assigns Input 6, 5, 4, 3, 2, 1. 0: No function 1: General Use 2: - 3: Manual feed CW 4: Manual feed CCW 5: Stop Ladder Logic Bank 6: CW direction limit sensor 7: Emergency stop 8: Terminate the Program Bank (same as]]) 9: CCW direction limit sensor
31	Input Function at Rising Edge of Slow Response Signal	000000	999999	000000	-	 Assign functions at rising edge of quick response signal. Each digit must be set individually and assigns Input 6, 5, 4, 3, 2, 1. 0: No function 1: Alarm reset/Program Bank Pause 2: Motor free 3: Position counter reset 4: Execute next Program Bank line 5: Execute previous Program Bank line 6: Execute Program Bank 1 7: Start origin search 8: Manual jog CW (K36=2 or 3, execute Program Bank 2) 9: Manual jog CCW (K36=2 or 3, execute Program Bank 3)
32	Input Function at Falling Edge of Slow Response Signal	000000	999999	000000	_	 Assign functions at falling edge of quick response signal. Each digit must be set individually and assigns Input 6, 5, 4, 3, 2, 1. 0: No function 1: Alarm reset/Program Bank Pause 2: Enable motor 3: Position counter reset 4: Execute next Program Bank line 5: Execute previous Program Bank line 6: Execute Program Bank 1 7: Start origin search 8: Manual jog CW (K36=2 or 3, execute Program Bank 2) 9: Manual jog CCW (K36=2 or 3, execute Program Bank 3)
33	Output logic	0000	1111	1111	-	Set output logic. Each digit must be set individually and assigns Output 4, 3, 2, 1. 0: Output port is ON when Output signal is OFF. 1: Output port is ON when Output signal is ON.

К	Parameter	Min	Max	Default	Unit	Description
34	Output Functions	0000	9999	0000	-	Assign Output Functions. Each digit must be set individually and assigns Output 4, 3, 2, 1. 0: No function 1: In-position 2: Alarm 3: General Use 4: Completion of origin search 5: - 6: In-position signal in merge motion 7: Rotation pulse output. When both Output 1 and Output 2 are set to 7, quadrature encoder pulse output. 8: In motor free 9: In push motion
35	Analog Output Functions	0	9	0	-	 0: Target position 1: Target position data magnified by 8 2: Current position 3: Current position data magnified by 8 4: Position error 5: Position error data magnified by 8 6: Current speed 7: Current speed data magnified by 8 8: Current torque 9: Current torque data magnified by 8
36	Command Pulse Format	0	3	0	-	Set P type motor to either CW/CCW mode or pulse/ direction mode. Or assign functions at rising/falling edge of input signal. 0 or 2 : CW / CCW 1 or 3 : Pulse / direction 2 or 3 : Enable to execute Program Banks 2 and 3 (except for P type)
37	Resolution/Speed Unit 0~10 : speed unit 100pps 20~30 : speed unit 10pps 40~50 : speed unit 100pps 60~70 : speed unit 10pps 80~90 : speed unit 1pps	0	90	3	-	Pulses per rotation and speed unit 0, 20, 80 : 200 40, 60 : 300 1, 21, 81 : 400 41, 61 : 400 2, 22, 82 : 500 42, 62 : 600 3, 23, 83 : 1000 43, 63 : 800 4, 24, 84 : 2000 44, 64 : 1200 5, 25, 85 : 2500 45, 65 : 1500 6, 26, 86 : 5000 46, 66 : 3000 7, 27, 87 : 10000 47, 67 : 4000 8, 28, 88 : 25000 48, 68 : 6000 9, 29, 89 : - 49, 69 : 8000 10, 30, 90 : 50000 50, 70 : 12000 When K37 is set to 40-70, incremental motion is not allowable.

к	Parameter	Min	Max	Default	Unit	Description
38	Analog Control Type	0	10	1	-	Control Target and method for analog input 0 : No function 1: Position control 2: Speed control for CW 3: Speed control for CCW 4 : Speed control for CW / CCW 5 : P data for Direct Mode 6 : S data (+) for Direct Mode 7 : S data (-) for Direct Mode 8 : S data (+/-) for Direct Mode 9 : Torque control 10 : Torque feedback control
39	Low Pass Filter Cut-off Frequency	0	1024	128	5rad/s	Low pass filter cut-off frequency for analog input
40	Maximum Speed	1	Depends on motor type	Depends on motor type	min ⁻¹	The maximum speed of motor. Set the speed when the maximum analog voltage is applied in case of speed control with analog input.
41	Analog Travel range	-32767	32767	200	Pulses	The max. travel range in case of position control with analog input
42	Origin Search Speed	1	32767	10	100pps 10pps 1pps	The speed for origin search
43	Acceleration for Origin search / Manual feed	1	32767	100	kpps ²	Set the acceleration for origin search and manual feed.
44	Deceleration Ratio	10	500	100	%	Deceleration ratio is relative to the acceleration in percentage. When K44=100, deceleration is the same as acceleration.
45	Origin Search Direction, Reverse coordinates	000	223	001	-	 First digit ··· Setting of Origin search Direction and Reverse Coordinates 0: CW direction 1: CCW direction Reverse Coordinates 3: CCW direction Reverse Coordinates Second digit ··· Unit of offset by K48 0: 100 pulses 1: 10 pulses 2: 1 pulse Third digit ··· Unit of software limit by K58, K59 0: 100 pulses 1: 10 pulses 1: 10 pulses 2: 1 pulse

Chapter 6 CML List

К	Parameter	Min	Max	Default	Unit	Description
46	Origin Signal Source	0	7	0	-	 Specify the origin signal source. 0: Stopper detection 1: Stopper detection (Automatic start when powered ON) 2: Origin sensor 3: Origin sensor (Automatic start when powered ON) 4: Z-phase signal 5: Z-phase signal (Automatic start when powered ON) 6: Origin sensor & Z-phase signal 7: Origin sensor & Z-phase signal (Automatic start when powered ON)
47	Stopper Detecting Torque for Origin Search	10	150	30	%	The torque where the motor will determine that the stopper detection has been completed. It is relative to the rated torque of the motor in percentage.
48	Offset distance between mechanical and electrical origins	-32767	32767	0	100 pulses 10 pulses 1 pulse	Offset between the mechanical and electrical origins. When it is not set to 0, the movement to the electrical origin is automatically performed after the detection of mechanical origin. The speed is the same as the origin search speed set by K42. When set to 0, electrical origin and mechanical origins are the same. *Unit depends on 2nd digit of K45.
49	Speed for Manual Feed	1	32767	10	100pps 10pps 1pps	Speed for manual feed
50	Feed Pulses for Manual Jog	1	100	10	pulses	Feed pulses for manual jog (Speed and acceleration are set automatically and can not be changed.)
51	Creeping speed	0	1000	0	100pps 10pps 1pps	Creeping speed.
55	In-position Range	1	100	5	Pulse	In-position range.
56	Position Error Overflow Threshold Level	1	32767	50	100 pulses	Threshold level for position error Over Flow
57	Overload Detection Time	100	5000	3000	msec	Overload alarm is recognized after continuation of overload state more than set time.
58	Software Limit (+)	0	32767	0		Movable limit in plus direction in reference to the origin. When set to 0, no software limit. *Unit depends on 3rd digit of K45.
59	Software Limit (-)	-32767	0	0		Movable limit in minus direction in reference to the origin. When set to 0, no software limit. *Unit depends on 3rd digit of K45.
60	Push Motion Torque Level	10	100	30	%	Torque level for push motion is relative to the rated torque in percentage. When set to odd No., push motion error will not occur.
61	Push Motion Holding Time	0	30000	200	msec	Time for keeping push motion. (When set to 0, push motion will continue without end)
62	Ladder Logic Bank No. Executed when Powered ON	0	30	0	-	Ladder Logic Bank No. that is executed automatically when powered ON. When K62=0, Ladder Logic Bank will not be executed.

к	Parameter	Min	Max	Default	Unit	Description
63	Ladder Logic Bank execution cycle time	0	30000	100	msec	Execution cycle time for Ladder Logic Bank. Ladder Logic Bank will be executed repeatedly with set cycle time.
64	Status LED Setting	0	1	0	-	Status LED setting, either activated or inactivated 0 : Status LED activated 1 : Status LED inactivated
65	Baud Rate between Slave Motors	0	5	0	-	Baud rate between the slave motors on the daisy chain network. 0:38.4Kbps, 1:9.6 Kbps, 2:19.2 Kbps, 3:57.6 Kbps, 4:115.2 Kbps, 5:230.4Kbps When K65 of ID1 motor is changed, all K65 values of other motors will be automatically changed. If any motor's K65 except for ID1 is changed, the other motors' K65 values are not changed.
68	Motor Free when Powered ON	0	1	1	-	Select either servo ON or motor free when powered ON 0: Motor free when powered ON 1: Servo ON when powered ON
69	S-Curve Gain	0	1024	0	-	S-curve gain in positioning When 0, motor makes trapezoidal motion.
70	Delimiter	0	1	1	-	Select the delimiter attached to the end of sent data from Cool Muscle. 0: CR 1: CRLF
71	External Encoder Type	0	7	0	-	Set the external encoder type 0: No external encoder 1: A-phase index 2: A-phase index, B-phase rotation direction 3: A-phase & B-phase index 4: A-phase & B-phase feedback 5: A-phase pulse counting 6: A-phase pulse counting, B-phase rotation direction 7: A-phase & B-phase pulse counting
72	External Encoder Resolution	0	32767	400	ppr	Resolution of external encoder
73	Output Pulse Width at Passing Point in Merge Motion	0	1000	10	msec	Output pulse width at passing point in merge motion.
74	Torque Control P Gain	0	1000	100	-	Proportional gain for the torque control using external torque sensor.
75	Torque Control I Gain	0	500	10	-	Integral gain for the torque control using external torque sensor.
76	Input Offset for Torque Sensor	0	500	250	0.01V	Input offset voltage of the external torque sensor for feedback control

К	Parameter	Min	Max	Default	Unit	Description
77	Input Range for Torque Sensor	-1000	1000	200	0.01V	Input range of the external torque sensor for feedback control.
78	Input Address for Modbus Host Communication	-1	32767	0	-	Input address of Cool Muscle for the Modbus host communication.
79	Input Address for Modbus Slave Communication	-1	32767	0	-	Input address of Cool Muscle for the Modbus slave communication.
80	Output Address for Modbus Slave Communication	-1	32767	0	-	Output address of Cool Muscle for the Modbus slave communication.
81	Slave Address	-255	255	0	-	Equipment ID number for Modbus or RS-485 communication.
82	Parity	0	2	0	-	Parity setting for data transmission. 0: None 1: Even 2: Odd

6.2. Data Commands

Com- mands	Function	unit	Format (n: Motor ID)	Example	Description
Р	Position Data	pulses	P#.n=Value		Define the position data in Motor n's P memory #.
	Definition		#: memory No.		Note) The max. values of the position data
			*(1~200)		depends on the resolution setting
			P0: direct mode	P.2=9000	Ex.) Motor 2's P0 is set to 9000.
			(0 can be omitted)	P1.3=9000	Define Motor 3's P1 is set to 9000.
					* Memory range can be changed by allocation (R
					type only)
	Relative Position	pulses	P#.n+=1000		The value can be defined as relative to the
	Data Definition		P1.3-=1000		current position by using + or – after Motor ID.
					Note) In direct mode (using P0), it is relative to
					the current position.
					In program mode, it is relative to values defined
					as P1~P200 [*] .
					Ex.)
				P.1+=1000	Motor 1's P0 is set to [current position + 1000].
				P1.3-=1000	Define Motor 3's P1 as [current position - 1000].
S	Speed Data		S#.n=value		Define an absolute speed data in Motor n's S
	Definition	or 10pps	#: memory No. (1~15)		memory #.
		or	S0: direct mode		Note) The negative value is treated as absolute
		1pps	(0 can be omitted)		value.
				S.2=100	Ex.) Define Motor 2's S0 as 100.
				S13.3=150	Define Motor 3's S13 as 150.
A	Acceleration Data	kpps ²	A#.n=value		Define the absolute acceleration data in Motor n's
	Definition		#: memory No. (1~8)		A memory #.
			A0: direct mode		Note) The negative value is treated as absolute
			(0 can be omitted)		value.
				A.2=10	Ex.) Define Motor 2's A0 as 10.
				A6.3=100	Define Motor 3's A6 as 100.
T	Timer Data	msec	T#.n=value		Define Timer data in Motor n's T memory #
M	Definition Torque Limit Data	%	#: memory No. (1~8) M#.n=value	T2.1=500	Ex.) Define Motor 1's T2 as 500. Define Torque limit data in Motor n's M memory #.
	Definition	/0			(0-100% of Max. motor torque can be set)
			#: memory No. (1~8)	M 2-50	
			M0: direct mode	M.2=50	Ex.) Define Motor 2's direct mode M0 as 50.
			(0 can be omitted)	M2.3=80	Define Motor 3's M2 as 80.

Com-	Function		Format	Evemple	Description
mands		unit	(n: Motor ID)	Example	Description
V	Variable Data		1) V#.n=value		Define Variable data in Motor n's V memory #.
	Definition		2) V#.n="Characters"		Up to 4 digit number or characters can be
			3) V#.n="motor's internal		used.
			variables"		Note) " double quotation is needed to use
			#: memory No. (1~15)		characters and motor's internal variables.
			Internal variables :		1) use as a number
			Px, Sx, Ix, Ux, Pe, AIN,		2) use as character
			PT, ST or CT		3) use as an internal state values as below
					Pxcurrent position
					Sxcurrent speed
					Ixcurrent Iq
					Uxcurrent motor status
					Peposition error
					AINanalog input
					PTtarget position
					STtarget speed
					CTexternal encoder counter
				V1.2=1234	Ex.) Define Motor 2's V1 as 1234
				V1.2="ABCD"	Define Motor 2's V1 as ABCD
				V1.2="Px"	Define Motor 2's V1 as Px (current position)
	Center Point		N#.n=value		Define center point data of circle in Motor n's
	data of Circle		#: memory No.(1~200)*		N memory #.
	Definition		N0: direct mode	N.1=100,N.2=100	Ex.) Define center point of circle to 100 pulses
			(0 can be omitted)	N1.1=100,N1.2=100	for X and Y.
					* Memory range can be changed by allocation
	D II 1 1		.		(R type only)
	Radius data		R#.n=value		Define radius data of circle in Motor n's R
	of Circle		#: memory No.(1~200)*		memory #.
	Definition		R0: direct mode		When the two values are set to 0, linear
			(0 can be omitted)		interpolation is executed.
					When the two values are different, elliptic
					trajectory will be drawn.
				R.1=100, R.2=100	Ex.) Define radius of circle to 100 pulses for X
				R1.1=100, R1.2=100	
					* Memory range can be changed by allocation
					(R type only)

6.3. Program Bank Commands

Com- mands	Function	OP	Format (n: Motor ID)	Example	Description
	Speed		S#.n	S1.1	Ex.) Define the specified motion speed as S1.
		0	-	-	Define the value of S2.1+V1.1 as S1.1.
		Ŭ	(1~15)	01.1 02.1 11	
A	Acceleration		A#.n	A1.1	Ex.) Define the specified motion acceleration as
		0	#:memory No.	A1.1= A2.1+ V2.1	
		-	(1~8)		Define the value of A2.1+ V2.1as A1.1.
Р	Position		P#.n	P1.1	Ex.) Define target position as P1.
			#:memory No.	P1.1+	Add or subtract P1 to or from the current position
			(1~200)*		and set P1 as the next target position. Define the
		0	,		value of P3.1+ V3.1 as P1.1.
					* Memory range can be changed by allocation (R
					type only)
Y	Execute next line		Y#.n		In Daisy Chain, by using Y command instead of P, the
	without in-position		#:P memory		motors move without waiting for in-position of Motor n.
	queuing	×	No.	A1.1,S4.1,Y1.1	Ex.) Motor 2 starts executing the next line without
	4			A1.2,S4.2,P1.2	waiting for Motor 1's in-position at P1.
Q	Push motion		Q#.n	711.2,01.2,11.2	Perform push motion
		×	#:P memory	A1.1,S4.1,Q10.1	Ex.) Motor 1 performs push motion against P10.
		~	No.		
Z	Execute next line		Z#.n		In Daisy Chain, by using Z command instead of Q,
	without push motion		#:P memory		the motors move without waiting for completion of
	completion queuing	×	No.		specified motor's push motion.
				A1.1,S4.1,Z1.1	Ex.) Motor 2 starts execution the next line without
				A1.2,S4.2,P1.2	waiting for Motor 1's completion of push motion.
М	Torque Limit		M#.n		Define the max. torque in percentage as M# of
		0	#:memory No.	M1.1	Motor n.
			(1~8)	M1.1= V5.1+ V6.1	Ex.) The max. torque is set to M1.1.
В	Beginning of		B#.n	B1.1	Define the beginning of a Program Bank and
	Program Bank	×	#: Bank No.	A1.1,S4.1,P12.1	specify the Program Bank number.
			(1~30)		Note) Program Bank should end with "End".
	Call other				Call the specified Program Bank, execute it and
	Program Bank		#: Bank No.	C2.1	return to the next line of the original Program
		×	(1~30)		Bank.
					Note) It is impossible to call other motor's
					Program Banks and re-call itself.
	Jump to other		J#.n	B1.1	Jump to the specified Program Bank, execute it
	Program Bank		#: Bank No.	J2.1	and can not return to the next line of the original
		×	(1~30)		Program Bank.
					Note) It is impossible to jump to other motor's
					Program Banks.

 \Box OP···It shows if it is possible to use with operators or not.

Chapter 6 CML List

Com-	Function	OP	Format	Example	Description
mands			(n: Motor ID)		
X	Looping		X#.n	X0.1	Execute the lines between X and X- repeatedly
			X#.n	A1.1, S1.1, P1.1	up to loop count (1~255).
			~	X2.1	When X0 is set, it loops infinitely.
		×	X.n-	P1.1	Note) When X-is not placed, lines after X until the end of
			X.n-	P2.1	Program Bank will be looped.
			# is loop count	X.1-	• A part of Program Bank can be
			n must be the same as	X.1-	executed repeatedly.
			Motor ID of B command.		Up to 10 nestings of X loop are available.
I	Conditional		[expression], [action 1],		Depending on the result of operation in expression,
	Branching on		[action 2]		if TRUE, execute action 1.
	Input Status				if FALSE execute action 2.
	Branching on		I#.n,[action 1], [action 2]	I1.1, C2.1, C3.1	Execute a specified motion according to Input
	Condition of		#:Input No.		# status.
	Single Input	0			Ex.) If Input 1 is ON (TRUE), Motor 1 calls
					Program Bank 2. If OFF (FALSE), Motor 1 calls
					Program Bank 3.
	Branching on		I#.n \ I #.n, [action 1], [action 2]	13.2 && 14.1,?99,?98	Ex.) If I3.2 & I4.1 are ON (TRUE), Motor 1
	Condition of		\ : Logical Operator		executes ?99. If FALSE, Motor 1 executes ?98.
	2 Inputs Operation		[Descending on the growth of an article in an article
V	Conditional		[expression], [action 1],		Depending on the result of operation in expression,
	Branching on		[action 2]		if TRUE, execute action 1.
	Variable Bropobing on		V#.n,[action 1], [action 2]	V1 1 200 209	if FALSE execute action 2. For single Variable, the operation of V>0 is
	Branching on Condition of				
			n must be the same as		applied.
	Single Variable		Motor ID of B command.		Ex.) If V1.1>0, Motor 1 executes ?99. Otherwise, Motor 1 executes ?98.
	Branching on		V#.n \ V#.n,[action 1], [action 2]	V1.1> V2.1, ?99, ?98	Ex.) If V1.1>V2.1, Motor 1 executes ?98.
	Condition of		\ : Operator	V1.1== V2.1, ?99, ?98	If V1.1≦V2.1, Motor 1 executes ?98.
	2 Variables		n must be the same as		If V1.1=V2.1, Motor 1 executes ?99.
			Motor ID of B command.		If V1.1≠V2.1, Motor 1 executes ?98.
Т	Timer		T#.n	T1.1	Wait for the time defined by T data.
		0	n must be the same as		T0 means no action.
			Motor ID of B command.		
W	Timer in		W#.n	I4.1,W1.1,?99	Wait for event to happen for the time defined
	Conditional		#:T memory No.	A1.1, S1.1, P1.1	by T data. If set to W0, then wait continuously.
	Branching		n must be the same as		Ex.) While I4.1 is TRUE, Motor 1 waits for the
		×	Motor ID of B command.		time set by T1. After the time is up, Motor 1
					executes next line.
					If I4.1 turns FALSE during the time set by T1,
					Motor 1 executes ?99 instantly and then next line.
N	Center Point of		N#.n,N#.n	N1.1,N1.2	Set the center point of circle to (N1.1, N1.2)
	Circle	0			(multi-axis application)
R	Radius of	0	R#.n,R#.n	R1.1,R1.2	Set X axis' radius of circle to R1.1, and set Y
	Circle				axis' radius to R1.2. (multi-axis application)
	Refer to 6.5	<u>,</u> .	Refer to 6.5 Chapter	Refer to 6.5 Chapter	Execution commands can be used within
Command		×			Program Bank.
END	End of	×	END	END	Define the end of Program Bank.
	Program Bank				

Symbol	Function	Format (n: Motor ID)	Example	Description
//	Comment	Command line //	B1.1//comment	Comments can be written after "//".
		Comment		
,	Command	Command,	A1.1, S1.1, P1.1	Command concatenation : Multiple commands
(comma)	Concatenation /	Command		can be described in a single line.
	Merge Motion /		A1.1, S1.1, P1.1, S2.1, P2.1	Merge motion : Motor 1 moves to P2 without
	Simultaneous			stopping at P1 smoothly, with speed change to
	Motion Execution			S2 when passing P1.
			P1.1, P3.2	Simultaneous motion : Motor 1 and 2 will start
				their motion at the same time.
;	Command	Command;	A1.1,S1.1,P1.1;	By using semicolon instead of comma, multiple
(semi	Concatenation	Command	S2.1,P2.1	commands and merge motion can be described
colon)	in Multiple Lines			in multiple lines.
:	Command	Command:Command	V1>V2, ?99.1: O1.1,	Colon allows the use of multiple commands in
(colon)	Concatenation		?96.1: F1.1	branching processing.
	in Branching			Ex.) If V1>V2, Motor 1 executes ?99 and O1.1.
				If V1<=V2, motor 1 executes ?96 and F1.1.

6.4. Ladder Logic Bank Commands

			OP · · · It shows if it is pos	sible to use with ope	rators or not.
Com- mands	Function	OP	Format (n: Motor ID)	Example	Description
L	Begging of		L#.n	L1.1	Define the beginning of a Ladder Logic Bank
	Ladder Logic	×	#: Bank No. (1∼30)		and specify Ladder Logic Bank number.
	Bank		-	-	Note) Ladder Logic Bank should end with "End".
CL	Call other		CL#.n	CL2.1	Call the specified Ladder Logic Bank,
	Ladder logic		#: Bank No. (1 ∼ 30)		execute it and return to the next line of the
	Bank	×			original Ladder Logic Bank.
					Note) It is impossible to call other motor's
	house to other		11 #	11.0.4	Ladder Logic Banks and re-call itself.
	Jump to other		JL#.n	JL2.1	Jump to the specified Ladder Logic Bank,
	Ladder Logic		#: Bank No. (1~30)		execute it and can not return to the next line
	Bank	×			of the original Ladder Logic Bank.
					Note) It is impossible to jump to other
	O an alltian al		Forman and an I for the second		motor's Ladder Logic Banks.
I	Conditional		[expression], [action 1],		Depending on the result of operation in expression,
	Branching on		[action 2]		if TRUE, execute action 1.
	Input Status Branching on		 #.n,[action 1], [action 2]		if FALSE execute action 2. Execute a specified motion according to
	Condition of		#:Input No.	11.1, OL2.1, OL3.1	
		0	#.input NO.		Input # status.
	Single Input	0			Ex.) If Input 1 is ON (TRUE), Motor 1 calls Ladder Logic Bank 2. If OFF (FALSE), Motor
					1 calls Ladder Logic Bank 3.
	Branching on		 # n \ I # n [action 1]	13 2 && 14 1 299 298	Ex.) If I3.2 & I4.1 are ON (TRUE), Motor 1
	Condition of		[action 2]	10.2 dd 14.1, 100, 100	executes ?99. If FALSE, Motor 1 executes
	2 Inputs Operation		\ : Logical Operator		?98.
	Conditional		[expression], [action 1],		Depending on the result of operation in expression,
	Branching on		[action 2]		if TRUE, execute action 1.
	Variable				if FALSE execute action 2.
	Branching on		V#.n,[action 1], [action 2]	V1.1,?99,?98	For single Variable, the operation of V>0 is applied.
	Condition of	~	n must be the same as		Ex.) If V1.1>0, Motor 1 executes ?99.
	Single Variable	0	Motor ID of L command.		Otherwise, Motor 1 executes ?98.
	Branching on		V#.n \ V#.n,[action 1], [action 2]	V1.1> V2.1, ?99, ?98	Ex.) If V1.1>V2.1, Motor 1 executes ?99.
	Condition of		\ : Operator	V1.1== V2.1, ?99, ?98	If V1.1≦V2.1, Motor 1 executes ?98.
	2 Variables		n must be the same as		If V1.1=V2.1, Motor 1 executes ?99.
			Motor ID of L command.		If V1.1≠V2.1, Motor 1 executes ?98.
Т	Timer		T#.n	T1.1	Wait for the time defined by T data.
		0	n must be the same as		T0 means no action.
			Motor ID of L command.		
W	Timer in		W#.n	I4.1,W1.1,?99	Wait for event to happen for the time defined
	Conditional		#:T memory No.	CL3.1	by T data. If set to W0, then wait coutinuously.
	Branching		n must be the same as		Ex.) While I4.1 is TRUE, Motor 1 waits for
		×	Motor ID of L command.		the time set by T1. After the time is up,
					Motor 1 executes next line.
					If I4.1 turns FALSE during the time set by T1,
					Motor 1 executes ?99 instantly and then next line.
	Capture Position		#x.n	#2.1	Capture the current position value and
	Data	0	x is P memory No.		store it to the specified motor's specified P
			-		memory.
	Refer to 6.5	×	Refer to 6.5 Chapter	Refer to 6.5 Chapter	Execution commands can be used within
Command	Chapter				Ladder Logic Bank.
END		×	END	END	Define the end of Ladder Logic Bank.

$-OP \cdots$ It shows if it is	possible to use with	operators or not.
--------------------------------	----------------------	-------------------

Chapter 6 CML List

Symbol	Function	Format (n: Motor ID)	Example	Description
//	Comment	Command line // Comment	B1.1//comment	Comments can be written after "//".
,	Command	Command,	V2.1>V3.1, V2.1=V3.1, T0.1	Command concatenation : Multiple
(comma)	Concatenation	Command		commands can be described in a
				single line.
;	Command	Command;	V2.1>V3.1;	By using semicolon instead of
(semi	Concatenation in	Command	V2.1=V3.1, T0.1	comma, multiple commands can be
colon)	Multiple Lines			described in multiple lines.
:	Command	Command:Command	V1>V2,?99.1:O1.1,?96.1: F1.1	Colon allows the use of multiple
(colon)	Concatenation in			commands in branching processing.
	Branching			Ex.) If V1>V2, Motor 1 executes
				?99 and O1.1. If V1<=V2, motor 1
				executes ?96 and F1.1.

6.5. Execution Commands

P····Program Bank, L···Ladder Logic Bank, D··· Direct Mode, indicate the availability of command.

Com-	Function	Р	L	D	Format	Example	Description
mands					(n: Motor ID)		
	Origin Search	0	0	0	.n	.1	Origin Search starts.
1	Move to Position 0	0	0	0	1.n	1.2	Move to position 0 with the speed and acceleration set by K42 and K43.
2	Assign Current				2.n	2.3	Assign current position to 0.
14	Position to 0	0	0	0	12.11	12.0	Set Motor 3's current position to 0.
(Enable Motor	0	0	0	(.n	(.1	Enable motor (Servo ON).
)	Motor Free	0	0	0).n).1	Motor free.
[Execute Program				[#.n	[1.2	Execute the specified Program Bank.
	Bank	0	0	0	#: Bank #		Only [resumes the execution of the Program
					1	100	Bank paused right before.
]	Pause Program Bank				1]CR : pause]CR]CR : stop	This command stops all motors and pauses Program Bank in operation.
	Dalik	0	0	0			Send the command twice to terminate the
							Program Bank.
]1	Pause Specified Motor]1.n]1.2	Pause only specified motor in Daisy Chain
		×	×	0			connection. In direct mode, pause only Motor 2 in
							Daisy Chain connection.
[L	Execute Ladder			~	[L#.n	[L1.1	Execute the specified Ladder Logic Bank.
	Logic Bank	×	0	0	#: Bank #		Only [L restarts the execution of the paused Ladder Logic Bank.
JL	Pause Ladder Logic]L.n]L.1CR : pause	Pause specified Ladder Logic Bank.
]	Bank				JE]L.1CR]L.1CR :	Send the command once to pause the Ladder
	- ••• •••	×	0	0		stop	Logic Bank.
							Send the command twice to stop the Ladder
							Logic Bank.
*	Emergency Stop				*	*	Emergency stop of operation with the max.
		0	0	0			deceleration.
							Send the command once to pause the Program Bank. Send the command twice to terminate the Program Bank.
*1	Cancel	_			*1	*1	Cancel emergency stop
	Emergency Stop	0	0	0			5 7 1
^	Execute the Direct	×	×	0	^.n	^.1	Execute the motion in Direct Mode.
	Mode Motion	^	^				
0	Output Signal ON	0	0	0	O#.n	02.1	Turn the specified output signal ON.
F	Output Signal OFF				#: Output # F#.n	F2.1	Output signal 2 of Motor 1 is turned ON. Turn the specified output signal OFF.
		0	0	0	#: Output #	Γ2.Ι	Output signal 2 of Motor 1 is turned OFF.
>	Execute Next Line	×	×	0	>.n	>.2	Execute the next line of Program Bank in pause.
	Execute Previous Line	^	^	<u> </u>		<.2	Execute the previous line of Program Bank in
<	Execute Frevious Line	×	×	0	<.n	~. ∠	pause.
}	Stop after Completing				}.n	}.1	Stop motor after completing the current line in
,	Current Line	×	×	0	ļ	ļ	Program Bank.
\$	Save data	×	×	0	\$.n	\$.1	Save the data into a specified motor's memory.
?	Query	Ô	Ô	0	?No.	?96	Please refer to section 6.6
' #	Capture Position	$\overline{}$			#x.n	#2.1	Capture the current position value and store it to
	Data	0	0	0	x is P memory No.		the specified motor's specified P memory.
@	Execute Circular and				@#.n,@#.n	@1.1,@1.2	Motors execute interpolation motion target to the
	Linear Interpolation	0	0	0			points (P1.1,P1.2).
		Ŭ	Ŭ	0			Only interpolation type can be used.
\	Allocation of Data				\P numeric	\P300	The area for 600 data in total is allocated for P, N and R.
(¥or₩)		×	×	0	\N numeric	\N200	Only interpolation type can be used.
(1011)							

6.6. Query

Queries can be used in [Direct Mode, Pro	oram Bank and L	adder Logic Bank.
		grann Danik ana E	Ladder Logio Darit.

Command	Query item	Format (n: Motor ID)	Response
		, , , , , , , , , , , , , , , , , , , ,	The predefined A,S and P data for Direct mode.
			Example: ?.1
?	Direct Mode Data	?.n	Predefined data of Direct mode of Motor 1?
			Response data example:
			S.1=500, A.1=2000, P.1=100000
			Predefined program banks 1-30.
			Example: ?1.1
		?#.n	Predefined Program Bank 1 of Motor 1?
?1~30	Program Bank	#: Program Bank	Response data example:
		No. 1~30	S1.1, A1.1, P1.1
			P2.1
			(Only the predefined content after B#.n)
			Current status of all outputs in hexadecimal.
			Example: ?50.1
			All the output current status of Motor 1?
?50	Output Signal	?50.n	Response data example:
			OUT.1=03
			* 03 means 0011 in binary number and 0 (OFF) or 1 (ON) is
			responded by one column of unit in order of Out4, 3, 2, 1.
			Current status of output signal 1 by 0 (OFF) or 1 (ON).
			Example:
?51	Output Signal 1	?51.n	?51.1
			Response data example:
			OUT1.1=0
			Current status of output signal 2 by 0 (OFF) or 1 (ON).
			Example:
?52	Output Signal 2	?52.n	?52.1
			Response data example:
			OUT2.1=0
			Current status of output signal 3 by 0 (OFF) or 1 (ON).
			Example:
?53	Output Signal 3	?53.n	?53.1
			Response data example:
			OUT3.1=0
			Current status of output signal 4 by 0 (OFF) or 1 (ON).
			Example:
?54	Output Signal 4	?54.n	?54.1
			Response data example:
			OUT4.1=0

Command	Query item	Format (n: Motor ID)	Response
?70	Input Signal	?70.n	Current status of all inputs in hexadecimal. Example: ?70.1 All the input current status of Motor 1? Response data example: IN.1=1C * 1C means 011100 in binary number and 0 (OFF) or 1 (ON) is responded by one column of unit in order of In6, 5, 4, 3, 2, 1.
?71	Temperature in Driver Case	?71.n	Temperature inside the driver case Example: ?71.1 Temperature inside the driver case of Motor 1? Response data example: Temp.1=40 (Unit : °C)
?72	Power Supply Voltage	?72.n	Current power supply voltage level Example: ?72.1 Current power supply voltage level of Motor 1? Response data example: VSEN.1=1400 (Unit : 0.1V)
?74	Analog Input	?74.n	Analog input voltage value 0-5V is divided by 1024 and respond 0 when 0V and 1023 when 5V is applied. Example: ?74.1 Analog input voltage value of Motor 1? Response data example: ADI0.1=512 (represents 2.5V) (Unit : 5/1023V)
?76	External Encoder Counter	?76.n	Value of counter for an external encoder. Example: ?76.1 Response data example: Ecnt.1=100
?85	Version Title	?85.n	Version title Example: ?85.1 Version title of Motor 1? Response data example ID1 : CM2v3.10R.1 #0802A12345 Serial No. Hardware No. Type Firmware Version Series Name ID No.

Command	Query item	Format (n: Motor ID)	Response
		, , , , , , , , , , , , , , , , , , , ,	User parameter K20 ~K89
			Example: ?90.1
			User parameter's of Motor 1?
200		?90.n	Response data example:
?90	User Parameter	290.0	K20.1=0, K21.1=0, K22.1=200, K23.1=1
			K88.1=0, K89.1=0
			4 parameters in 1 line, each is separated with a comma(,).
			Position error value
			Example: ?95.1
?95	Position Error	?95.n	Position error value of Motor 1?
			Response data example:
			Pe.1=0 (Unit : pulse)
			Current position
			Example: ?96.1
?96	Current position	?96.n	Current position of Motor 1?
			Response data example:
			Px.1=10000 (Unit : pulse)
			Current speed
	Current speed	?97.n	Example: ?97.1
?97			Current speed of Motor 1?
			Response data example:
			Sx.1=100 (Unit : 100pps/10pps/1pps)
			Current torque
			Example: ?98.1
?98	Current torque	?98.n	Current torque of Motor 1?
			Response data example:
			Ix.1=20
			Current status
			Example: ?99.1
			Response data example:
			Ux.n=0 motor is running
			Ux.n=1 position error over flow
			Ux.n=2 over speed/regenerative voltage
			Ux.n=4 overload
?99	Motor Status	?99.n	Ux.n=8 In-position
			Ux.n=16 motor free
			Ux.n=32 push motion
			Ux.n=40 push motion completed
			Ux.n=64 power module over current
			Ux.n=128 temperature alarm
			Ux.n=256 push motion error
			Ux.n=512 emergency stop
			Multiple status can be responded by addition of above numbers.
V1~15	Specified Variable		Value of specified V (Variables) memory
	Data	#:memory No.	

The commande below can	not he used in Drearem	Bank and Ladder Logic Bank.
THE COMMANDS DEIDW CAN	TIOL DE USEU ILLETOULAIL	Dalik aliy Layyel Loyic Dalik.

Command	Query item	Format (n: Motor ID)	Response
?L1~30	Ladder Logic Bank	?L#.n #: Ladder Logic Bank No.	Predefined Ladder Logic Banks. Example: ?L1.1 Predefined Ladder Logic Bank 1 of Motor 1? Response data example: I1.1&&I2.1, O1.1, O2.1 I3.1 I4.1, O3.1, O4.1 (Only predefined content after L#.n)
A1~8	Specified Acceleration Data	A#.n #: memory No.	Value of specified A (Acceleration) memory No. Example: A1.1 Predefined acceleration data 1 of Motor 1? Response data example: A1.1=100
S1~15	Specified Speed Data	S#.n #: memory No.	Value of specified S (Speed) memory No. Example: S1.1 Predefined speed data 1 of Motor 1? Response data example: S1.1=500
M1~8	Specified Torque Limit Data	M#.n #: memory No.	Value of specified M (Torque Limit) memory No. Example: M1.1 Predefined torque limit data 1 of Motor 1? Response data example: M1.1=10000
T1~8	Specified Timer Data	T#.n #: memory No.	Value of specified T (Timer) memory No. Example: T1.1 Predefined timer data 1 of Motor 1? Response data example: T1.1=1000
P1~200	Specified Position Data	P#.n #: memory No.	Value of specified P (Position) memory No. Example: P1.1 Predefined position data 1 of Motor 1? Response data example: P1.1=100 Only R type, P data up to P600 is available by allocation.
N1~200	Specified Center Point of Circle Data	N#.n #: memory No.	Value of specified N (Center Point of Circle) memory No. Example: N1.1 Predefined center point of circle data 1 of Motor 1? Response data example: N1.1=100 Only R type, N data up to N600 is available by allocation.

Command	Query item	Format (n: Motor ID)	Response
R1~200	Specified Radius of Circle Data		Value of specified R (Radius of Circle) memory No. Example: R1.1 Predefined radius of circle data 1 of Motor 1? Response data example: R1.1=100 Only R type, R data up to R600 is available by allocation.
?A	All Acceleration Data	?A.n	All acceleration data 4 parameters in 1 line, each is separated with a comma(,).
?S	All Speed Data	?S.n	All speed data 4 parameters in 1 line, each is separated with a comma(,).
?M	All Torque Limit Data	?M.n	All torque limit data 4 parameters in 1 line, each is separated with a comma(,).
?Т	All Timer Data	?T.n	All timer data 4 parameters in 1 line, each is separated with a comma(,).
?∨	All Variable Data	?V.n	All variable data 4 parameters in 1 line, each is separated with a comma(,).
?P	All Position Data	?P.n	All position data 4 parameters in 1 line, each is separated with a comma(,).
?N	All Center Point of Circle Data *Available with R type only	?N.n	All center point of circle data 4 parameters in 1 line, each is separated with a comma(,).
?R	All Radius of Circle Data *Available with R type only	?R.n	All radius of circle data 4 parameters in 1 line, each is separated with a comma(,).
?999	All Data List	?999.n	All data of P, S, A, T, M, N, R, V
?1000	All Banks	?1000.n	All Program Banks and Ladder Logic Banks

6.7. Arithmetic Operators

These operators perform mathematical calculations.

Any number is required to be integer and defined value as in P(positio data) or V(variable).

Operator	Functions	Format	Examples	Description
=	Sets value	[variable] = [expression]	V1.1=V2.1 P1.1=P2.1+P3.1	 = Operator assigns the value on its right to the variable on its left. Ex.) When V2.1=50, V1.1is assigned to 50 When P2.1=1000, P3.1=2000, then P1.1=3000
+	Addition	[number1] + [number2]	P1.1=P2.1 + V1.1	+ Operator adds two numbers. The result is their arithmetic sum. Ex.) When P2.1=1000, V1.1=300, then P1.1=1300
-	Subtraction	[number1] - [number2]	P1.1=P2.1 - V1.1	- Operator returns the difference between two numbers. The result is calculated by subtracting number2 from number1. Ex.) When P2.1=1000, V1.1=300, then P1.1=700
*	Multiplication	[number1] * [number2]		* Operator multiplies two numbers. The result is the product of number1 and number2. Ex.) When P2.1=100, V1.1=30, then P1.1=3000
/	Division	[number1] / [number2]	P1.1=P2.1 / V1.1	/ Operator divides two numbers. The result is the quotient of number1 divided by number2, not including any remainder. The decimal fraction part is truncated. Ex.) When P2.1=6000, V1.1=20, then P1.1=300
U1	Sine	U1([number])	P1.1=U1(V1.1)	U1 Operator returns 10000 times value of sine operation result in integer as following expression. The decimal fraction part is truncated. $U1(\theta) = 10000 \times \sin(2\pi \times \frac{\theta}{36000})$ θ is data as V value (Unit:0.01degrees) Ex.) When V1.1=3000 (30 degrees), P1.1= U1(V1.1) = 10000*sin(2\pi \times 100/36000) = 5000
U2	Cosine	U2([number])	P2.1=U2(V1.1)	U2 Operator returns 10000 times value of cosine operation result in integer as following expression. The decimal fraction part is truncated. $U2(\theta) = 10000 \times \cos(2\pi \times \frac{\theta}{36000})$ θ is data as V value (Unit:0.01degrees) Ex.) When V1.1=3000 (30 degrees), P2.1=U2(V1.1) = 10000*cos(2\pi \times 100/36000) = 8660
U3	Square Root	U3([number])	P3.1=U3(V1.1)	U3 Operator returns value of square-root operation result in integer. The decimal fraction part is truncated. $U3(\chi) = \sqrt{\chi}$ χ is data as V value (Integer) Ex.) When V1.1=100, P3.1=U3(V1.1)=10

6.8. Logic Operators

Operator	Functions	Format	Examples	Description
&&	And	[operand1] && [operand2]	14.1 && 13.2	And(&&) Operator performs a logical conjunction on two Boolean operands. Result is True if and only if both operand1 and operand2 evaluate to True. The following table illustrates how result is determined. $\hline \hline \begin{array}{c} \hline operand1 & operand2 & the value of result \\ \hline TRUE & TRUE & TRUE \\ \hline TRUE & FALSE & FALSE \\ \hline FALSE & TRUE & FALSE \\ \hline FALSE & FALSE & FALSE \\ \hline FALSE & FALSE & FALSE \\ \hline FALSE & FALSE & FALSE \\ \hline \end{array}$
II	Or	[operand1] [operand2]	14.1 13.2	Or() Operator performs an inclusive logical disjunction on two Boolean operands. Result is False if and only if both operand1 and operand2 evaluate to False. The following table illustrates how result is determined. $\begin{array}{c c c c c c c c c c c c c c c c c c c $
!!	Negation	!!(operand)	!!(I3.2) I4.1 && !!(I3.2)	Not(!!) Operator performs a logical negation on a Boolean operand. The following table illustrates how result is determined. <u>operand</u> <u>the value of result</u> TRUE FALSE FALSE TRUE Ex.) If I3.2=TRUE, then result is FALSE If I4.1=TRUE, I3.2=FALSE, then result is TRUE [Correct example] I2.1 && I4.1 && !!(I3.1), O1.1, F1.1 If Input Signal 2 and Input Signal are ON(TRUE), and Input Signal 3 is OFF(FALSE), then Output Signal 1 turns ON(TRUE). Otherwise Output Signal 1 is OFF(FALSE). [Incorrect example] I2.1 && !!(I3.1) && I4.1, O1.1, F1.1 * The next character following && !!() strings should be "," in a statement. I2.1 && !!(I3.1) && !!(I4.1), O1.1, F1.1 * Multiple Not(!!) Operators are not permissible in a statement.

6.9. Comparison Operators

These operators compare two numbers to determine whether or not they meet the conditions and return the results of comparison.

The value representing the result of the comparison is Boolean. Any number is required to be integer and defined value in V(variable)

Operator	Functions	Format	Examples	Description
				Result is TRUE if number1 is equal to number2.
==	== Equal to	[number1] == [number2]		Otherwise FALSE.
			V1.1 == V2.1	Ex.) If V1.1=100, V2.1=100, then TRUE
			V1.1 == V2.1 + V3.1	If V1.1=100, V2.1=50, V3.1=50, then TRUE
				Result is TRUE if number1 is not equal to number2.
!=	Not Equal to	[number1] != [number2]		Otherwise FALSE.
			V1.1 != V2.1	Ex.) If V1.1=100, V2.1=100, then FALSE
			V1.1 != V2.1 + V3.1	If V1.1=100, V2.1=50, V3.1=50, then FALSE
				Result is TRUE if number1 is greater than number2.
>	Greater than	[number1] > [number2]		Otherwise FALSE.
			V1.1 > V2.1	Ex.) If V1.1=110, V2.1=100, then TRUE
			V1.1 > V2.1 + V3.1	If V1.1=100, V2.1=50, V3.1=50, then FALSE
		ual to		Result is TRUE if number1 is greater than or equal
	Greater than			to number2.
>=	or equal to			Otherwise FALSE.
	or equal to		V1.1 >= V2.1	Ex.) If V1.1=110, V2.1=100, then TRUE
			V1.1 >= V2.1 + V3.1	If V1.1=100, V2.1=50, V3.1=70, then FALSE
				Result is TRUE if number1 is less than number2.
<	Smaller than	[number1] < [number2]		Otherwise FALSE.
	Smaller man		V1.1 < V2.1	Ex.) If V1.1=110, V2.1=100, then FALSE
			V1.1 < V2.1 + V3.1	If V1.1=100, V2.1=50, V3.1=70, then TRUE
	<= Smaller than or equal to	to [number1] <= [number2]		Result is TRUE if number1 is less than or equal to
				number2.
<=				Otherwise FALSE.
			V1.1 <= V2.1	Ex.) If V1.1=110, V2.1=100, then FALSE
			V1.1 <= V2.1 + V3.1	If V1.1=100, V2.1=50, V3.1=50, then TRUE

The following table contains a list of the relational comparison operators and the conditions that determine whether result is TRUE or FALSE.

Operator	TRUE if	FALSE if
==	number1 == number2	number1 != number2
!=	number1 != number2	number1 == number2
>	number1 > number2	number1 <= number2
>=	number1 >= number2	number1 < number2
<	number1 < number2	number1 >= number2
<=	number1 <= number2	number1> number2

Revision History

Revised Date	User's Guide No.	Page	Object	Revised Item
May, 2007	MDUG-CML/07525E-01			New Draft
Feb., 2008	MDUG-CML/08215E-01	CH 3-31~33	K26	Parameter name and Description are changed.
		CH 3-35	K28, K31	
		CH 3-36	K29, K32	K36=2 change to K36=2 or 3.
		CH 3-40	K36	Description is changed.
		CH 3-51	K45	Function of setting unit is added.
		CH 3-54	K48	Unit is changed.
		CH 3-60	K57	"80% of peak torque" change to "Rated torque".
		CH 3-61	K58, K59	Unit is changed.
		CH 3-62	K60	Description of when set to odd No. is added.
		CH 5-96	K46, K47	K45=1 change to K45=**1,
		011 3-90	140, 147	K45=0 change to K45=**0.
		CH 6-116	K26	Max value and Description are changed.
		CH 6-117, 118	K28, K29 K31, K32	K36=2 change to K36=2 or 3.
		CH 6-119	K36	Max value and Description are changed.
			K41, K51,	
		CH 6-120~123	K60, K63,	Default value is changed.
			K68, K72,	Delaut value is changed.
			K77	
		CH 6-120	K45	Description of 2nd digit and 3rd digit is added.
			K48,	Unit is changed.
		CH 6-121	K58, K59	Description of setting unit is added.
			K60	Description of when set to odd No. is added.
		CH 6-133	?85	Serial No. is added.
Apr., 2008	MDUG-CML/08215E-02	CH 6-135	М	M1 \sim 7 change to M1 \sim 8.
Jan., 2009	MDUG-CML/09101E-01	CH 2-013	Р	Caution is added.
		CH 2-016	Р	Caution is added.
		CH 3-075	K81	Caution is added.
		0114.000		Description of merge motion during even at the
		CH 4-088	4.4	interpolation is added.
		CH 6-120	K45	Default value is changed.
		CH 6-121	K48,	"*Unit depends on *** digit of K45." is added.
			K58, K59	and appende on a light of 1440. 18 added.

* User's Guide No. is described in the cover of this manual.